J. Am. Chem. Soc. 1996, 118, 6297-6298
6297
Scheme 1. Asymmetric Induction via Enantiotopic Facial
Discrimination
On Asymmetric Induction in Allylic Alkylation via
Enantiotopic Facial Discrimination
Barry M. Trost,* Michael J. Krische, Rumen Radinov, and
Giuseppe Zanoni
Department of Chemistry, Stanford UniVersity
Stanford, California 94305
ReceiVed February 28, 1996
Table 1. Asymmetric Sulfone Formation with Crotyl Carbonatea
Metal catalyzed allylic alkylations differentiate themselves
from most transition metal catalyzed reactions in that many
different phenomena may lead to asymmetric induction.1-3 One
of the lesser explored phenomena involving discrimination in
complexing enantiotopic faces followed by ionization to lead
to asymmetric induction has not been very successful in Pd-
catalyzed processes.4,5 Scheme 1 outlines some of the issues
that complicate such studies. A major obstacle in Pd-catalyzed
reactions stems from the propensity of nucleophiles to attack
at the sterically more accessible terminal position (path b) which
leads to an achiral product.6 While changing the metal to Mo7
or W8 may overcome this issue, the greater scope of Pd-
catalyzed reactions makes them the method of choice when
possible. Nevertheless, within a limited range of allylic
substrates, some promising results with W involving enantio-
topic discrimination have been obtained.9 A second obstacle
is the facility of migration of Pd from one enantiotopic face to
the other (path c) via a η3-η1-η3 mechanism.1,6a Indeed, such
a phenomenon, if fast relative to nucleophilic attack, can lead
to asymmetric induction if the difference in activation energies
for path a and ent-path a is sufficiently large in the presence of
chiral ligands. In such an event, the nucleophilic addition step
determines the asymmetric induction.10 A third obstacle derives
from the fact that the preferred motions with chiral scalemic
ligands during the ionization and alkylation steps must be
opposite. Thus, if the former is a matched event, the latter must
become a mismatched one and vice versa. Such stereochemical
mismatching would tend to favor paths b and c competing with
path a or ent-path a. We wish to report that asymmetric Pd-
temp time isolated ratiob
entry substrate ligand (°C) (h) yield
2:3 %ee 2c config
1
2
3
4
5
6
7d
E-1a
E-1a
E-1a
E-1a
Z-1a
Z-1a
E-1a
4
4
5
6
4
4
4
0
20
0
0
0
1
2
3
2
2
97% 83:17 90 (92)
R
R
S
R
R
R
R
91% 76:24 80
84% 70:30 80
92% 69:31 28
92% 79:21 29
20 0.33 99% 82:18 16
92% 79:21 (92)
0
2
a Reaction performed with 0.25 mol % (dba)3Pd2‚CHCl3, 0.6 mol
% L*, 6% (n-C6H13)4NBr, 1.5 equiv PhSO2Na, 3:1 CH2Cl2:H2O unless
otherwise stated. b Determined by GC or HPLC analysis. c Determined
by chiral HPLC (Chiralpak AD column) using 90:10 heptane-
isopropanol as eluting solvent; values in parentheses were determined
by NMR spectroscopy with a chiral shift reagent. d p-Toluenesulfinate
rather than benzenesulfinate was employed as the nucleophile.
catalyzed allylic alkylations, which differentiate enantiotopic
faces of the substrate, can be synthetically useful with the
modular asymmetric ligands under development in these
laboratories.3
Our initial efforts focused on the concept of rapidly inter-
converting π-allyl intermediates thereby requiring chiral rec-
ognition in the nucleophilic addition step.10a We examined the
reaction of eq 1 because prior studies with a tartrate-derived
(1) Trost, B. M.; Van Vranken, D. L. Chem. ReV. 1996, in press.
(2) For a few examples with the most successful ligands, see: (a) Trost,
B. M.; Murphy, D. J. Organometallics 1985, 4, 1143. (b) Hayashi, T.;
Yamamoto, A.; Hagihara, I.; Ito, Y. Tetrahedron Lett. 1986, 27, 191. (c)
Dawson, G. J.; Frost, C. G.; Williams, J. M. J.; Coote, S. J. Tetrahedron
Lett. 1993, 34, 3149. (d) Springz, J.; Helmchen, G. Tetrahedron Lett. 1993,
34, 1769. (e) von Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1993,
32, 566. (f) Trost, B. M.; Peukert, S.; Zambrano, J.; Ziller, J. W. Angew.
Chem., Int. Ed. Engl. 1995, 34, 2386.
(3) Trost, B. M.; Van Vranken, D. L. Angew. Chem., Int. Ed. Engl. 1992,
31, 228. Trost, B. M.; Van Vranken, D. L.; Bingel, C. J. Am. Chem. Soc.
1992, 114, 9327. Trost, B. M.; Li, L.; Guile, S. D. J. Am. Chem. Soc. 1992,
114, 8745. Trost, B. M.; Pulley, S. R. J. Am. Chem. Soc. 1995, 117, 10143.
(4) For a creation of axial chirality, see: Legros, J. Y.; Fiaud, J. C.
Tetrahedron 1994, 50, 465. Gil, R.; Fiaud, J. C. Bull. Soc. Chim. Fr. 1994,
584.
bis-phosphine ligand (DIOP) and chiral 2-(2-diphenylphos-
phino)oxazolines have suggested that such equilibration was
rapid.5,11 Table 1 summarizes the results we obtained for the
reaction of crotylmethyl carbonate (1a, R1 ) OCH3) using our
modular ligands 4,3 5,10a and 62g under phase transfer conditions
(5) Complete or partial equilibration has normally been observed. See:
(a) Hiroi, K.; Makino, K. Chem. Pharm. Bull. 1988, 36, 1744. (b) Hayashi,
T.; Kishi, K.; Yamamoto, H.; Ito, Y. Tetrahedron Lett. 1990, 31, 1743. (c)
Hayashi, T.; Yamamoto, A.; Ito, Y. Tetrahedron Lett. 1988, 29, 669. (d)
Hayashi, T.; Ohno, A.; Lu, S.; Matsumoto, Y.; Uozumi, Y.; Miki, M.;
Yanagi, K. J. Am. Chem. Soc. 1994, 116, 775. (e) Takemoto, T.; Nishikimi,
Y.; Sodeoka, M.; Shibasaki, M. Tetrahedron Lett. 1992, 33, 3572, 3531.
(f) Yamamoto, K.; Deguchi, R.; Ogimura, Y.; Tsuji, J. Chem. Lett. 1984,
1657. (g) Gene´t, J. P.; Grisone, S. Tetrahedron Lett. 1988, 29, 4543.
(6) (a) Godleski, S. A. ComprehensiVe Organic Synthesis; Trost, B. M.,
Fleming, I., Semmelhack, M. F., Eds.; Pergamon Press: Oxford: Vol. 4,
Chapter 3.3, pp 585-662. (b) Trost, B. M.; Hung, M.-H. J. Am. Chem.
Soc. 1984, 106, 6837.
(see footnote a of Table 1). The absolute configuration was
established by chemical correlation12 with S-2-butylphenyl
sulfone and comparison to the literature.5a
The reaction with ligand 4 gives the highest ee recorded, 92%.
In addition, the regioselectivity favoring 2 improves from 3:1
with other chiral ligands5a,11 to 5:1 with 4. However, inspection
of the table reveals that it does not arise by rapid equilibration
of the π-allyl intermediates with enantiodiscrimination occurring
in the subsequent alkylation step. Notably, the racemic regio-
isomeric substrate 1-buten-3-yl methyl carbonate gives a 94%
yield of an 87:13 mixture of 2:3 in which 2 is racemic in contrast
to the high ee with the achiral E substrate. Thus, in contrast to
other chiral ligands,5 the source of the enantiodiscrimination
(7) Trost, B. M.; Lautens, M. J. Am. Chem. Soc. 1987, 109, 1469;
Tetrahedron 1987, 43, 4817.
(8) Trost, B. M.; Tometzki, G. B.; Hung, M.-H. J. Am. Chem. Soc. 1987,
109, 2176. Trost, B. M.; Hung, M.-H. J. Am. Chem. Soc. 1983, 105, 7757.
(9) Lloyd-Jones, G. C.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1995,
34, 462.
(10) (a) Trost, B. M.; Bunt, R. C. Angew. Chem., Int. Ed. Engl. 1996,
35, 99. (b) Dawson, G. J.; Williams, J. M. J.; Coote, S. J. Tetrahedron
Lett. 1995, 36, 461. (c) Auburn, P. R.; Mackenzie, P. B.; Bosnich, B. J.
Am. Chem. Soc. 1985, 107, 2033.
(11) Eichelmann, H.; Gais, H.-J. Tetrahedron: Asymm. 1995, 6, 643.
(12) cf.: Hiroi, K.; Kitayama, R.; Sato, S. Chem. Pharm. Bull. 1984,
32, 2628.
S0002-7863(96)00649-X CCC: $12.00 © 1996 American Chemical Society