LETTER
One-Pot Synthesis of 5,5¢-Disubstituted Hydantoins
2205
mixture is stirred for 30 min at 0 °C then carefully quenched
with EtOH (4 mL). Then, (NH4)2CO3 (576 mg, 6 mmol),
KCN (197 mg, 3 mmol; CAUTION) and H2O (4 mL) are
successively added and the tube is sealed. The hetero-
geneous solution is heated at 75 °C (preheated bath) for 24 h
then allowed to cool to r.t. The mixture is poured into H2O
(50 mL) and extracted with EtOAc (2 × 25 mL). The
combined organic extract is washed with brine (25 mL),
dried over MgSO4 and evaporated to dryness. The resulting
solid is washed with n-pentane (2 × 10 mL) and dried under
high vacuum to yield the hydantoin in a high state of purity
as judged by NMR analysis and microanalytical data.
To conclude, this chemistry offers a simple, practical
method for the synthesis of 5,5¢-disubstituted hydantoins
exploiting two points of diversity. Since all the hetero-
cycles produced in these modified Bucherer–Bergs reac-
tions are isolated in high purity without recourse to
chromatography,13,15 this chemistry seems well suited for
the rapid generation of hydantoin chemical libraries.16
Work in this direction continues in our laboratories.
Acknowledgment
(14) Selected Data.
The Engineering and Physical Sciences Research Council (GR/
R82586/02) is gratefully acknowledged for financial support.
Compound 5f: mp 228–229 °C. IR (neat): 3169, 2961, 1750,
1717, 1430, 1370, 1108, 764 cm–1. 1H NMR (400 MHz,
DMSO-d6): d = 0.92 (s, 9 H), 1.24 (s, 3 H), 7.95 (s, 1 H),
10.50 (s, 1 H). 13C NMR (100 MHz, DMSO-d6): d = 18.8,
24.5, 36.1, 66.8, 156.7, 178.2. MS (ES): m/z = 169 [M –
H]–. HRMS (EI): m/z calcd for C8H12N2O2: 171.1134; found:
171.1128. Anal. Calcd for C8H14N2O2 (%): C, 56.45; H,
8.29; N, 16.46. Found: C, 56.52; H, 8.35; N, 16.35.
Compound 5h: mp 181–182 °C. IR (neat): 3180, 3052,
2927, 1774, 1709, 1432, 1232, 813, 756 cm–1. 1H NMR (400
MHz, DMSO-d6): d = 0.89 (t, J = 7.0 Hz, 3 H), 1.09–1.20
(m, 1 H), 1.24–1.41 (m, 3 H), 2.00–2.09 (m, 2 H), 7.21 (dt,
J = 1.0, 7.0 Hz, 1 H), 7.23 (d, J = 7.5 Hz, 1 H), 7.38–7.45 (m,
1 H), 7.53 (dt, J = 1.5, 8.2 Hz, 1 H), 8.31 (s, 1 H), 10.87 (s,
1 H). 13C NMR (100 MHz, DMSO-d6): d = 13.9, 22.0, 24.8,
34.7, 64.9, 116.3 (d, J = 22 Hz), 124.4 (d, J = 3 Hz), 126.3
(d, J = 11 Hz), 128.1 (d, J = 3 Hz), 130.4 (d, J = 9 Hz),
156.7, 160.4 (d, J = 247 Hz), 176.1. MS (ES): m/z = 249
[M – H]–. HRMS (EI): m/z calcd for C13H15FN2O2:
250.1118; found: 250.1114. Anal. Calcd for C13H15FN2O2
(%): C, 62.39; H, 6.04; N, 11.19. Found: C, 62.50; H, 6.11;
N, 11.01.
Compound 5j: mp 244–245 °C. IR (neat): 3304, 3191, 1775,
1759, 1728, 1710, 1411, 1023, 747, 693 cm–1. 1H NMR (400
MHz, DMSO-d6): d = 2.88 (s, 6 H), 6.70 (d, J = 8.8 Hz, 2 H),
7.11 (d, J = 8.8 Hz, 2 H), 7.29–7.40 (m, 5 H), 9.12 (s, 1 H),
10.9 (s, 1 H). 13C NMR (100 MHz, DMSO-d6): d = 40.0,
69.8, 111.9, 126.6, 127.1, 127.2, 127.7, 128.3, 140.4, 149.8,
156.0, 175.4. MS (ES): m/z = 294 [M – H]–. HRMS (EI):
m/z calcd for C17H17N3O2: 295.1321; found: 295.1317. Anal.
Calcd for C17H17N3O2 (%): C, 69.14; H, 5.80; N, 14.23.
Found: C, 68.80; H, 5.88; N, 13.96.
References and Notes
(1) (a) Ware, E. Chem. Rev. 1950, 46, 403. (b) López, C. A.;
Trigo, G. G. Adv. Heterocycl. Chem. 1985, 38, 177.
(c) Meusel, M.; Gütschow, M. Org. Prep. Proced. Int. 2004,
36, 391.
(2) Nakabayashi, M.; Regan, M. M.; Lifsey, D.; Kantoff, P. W.;
Taplin, M.-E.; Sartor, O.; Oh, W. K. Br. J. Urol. Int. 2005,
96, 783.
(3) Bazil, C. W. Curr. Treat. Options Neurol. 2004, 6, 339.
(4) Nakajima, M.; Itoi, K.; Takamatsu, Y.; Kinoshita, T.;
Okazaki, T.; Kawakubo, K.; Shindo, M.; Honma, T.;
Tohjigamori, M.; Haneishi, T. J. Antibiot. 1991, 44, 293.
(5) Burton, S. G.; Dorrington, R. A. Tetrahedron: Asymmetry
2004, 15, 2737.
(6) For recent illustrative examples, see: (a) Zhang, D.; Xing,
X. C.; Cuny, G. D. J. Org. Chem. 2006, 71, 1750.
(b) Ignacio, J. M.; Macho, S.; Marcaccini, S.; Pepino, R.;
Torroba, T. Synlett 2005, 3051. (c) Patel, V. M.; Desai, K.
R. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
2005, 44, 1084. (d) Manku, S.; Curran, D. P. J. Org. Chem.
2005, 70, 4470. (e) Alsina, J.; Scott, W. L.; O’Donnell, M. J.
Tetrahedron Lett. 2005, 46, 3131. (f) Volonterio, A.; de
Arellano, C. R.; Zanda, M. J. Org. Chem. 2005, 70, 2161.
(7) (a) Bergs, H. DRP 566094, 1929. (b) Bucherer, H. T.;
Brandt, W. J. Prakt. Chem. 1934, 140, 129. (c) Bucherer,
H. T.; Steiner, W. J. Prakt. Chem. 1934, 140, 291.
(d) Bucherer, H. T.; Lieb, V. A. J. Prakt. Chem. 1934, 141,
5; see also ref. 1a.
Compound 5m: mp 199 °C (decomp.). IR (neat): 3227,
2958, 1767, 1736, 1713, 1396, 1232, 1006, 763, 710 cm–1.
1H NMR (400 MHz, DMSO-d6): d = 1.14–1.32 (m, 2 H),
1.44–1.66 (m, 6 H), 2.63–2.73 (m, 1 H), 7.02 (dd, J = 3.8,
5.0 Hz, 1 H), 7.09 (dd, J = 1.3, 3.8 Hz, 1 H), 7.48 (dd,
J = 1.3, 5.0 Hz, 1 H), 8.83 (s, 1 H), 10.83 (s, 1 H). 13C NMR
(100 MHz, DMSO-d6): d = 25.0, 25.4, 26.2, 26.8, 46.6, 68.5,
124.5, 125.8, 127.0, 143.1, 156.9, 175.1. MS (ES): m/z = 249
[M – H]–. HRMS (EI): m/z calcd for C12H14N2O2S:
250.0776; found: 250.0767. Anal. Calcd for C12H14N2O2S
(%): C, 57.58; H, 5.64; N, 11.19. Found: C, 57.91; H, 5.80;
N, 11.04.
Compound 5q: mp 244–245 °C. IR (neat): 3250, 3042,
1760, 1712, 1598, 1450, 1255, 758 cm–1. 1H NMR (400
MHz, DMSO-d6): d = 0.92 (s, 9 H), 3.74 (s, 3 H), 6.88–6.92
(m, 1 H), 7.22–7.30 (m, 3 H), 8.91 (s, 1 H), 10.80 (s, 1 H).
13C NMR (100 MHz, DMSO-d6): d = 24.8, 37.8, 55.1, 71.9,
112.5, 113.8, 119.6, 128.3, 137.6, 156.3, 158.4, 175.3. MS
(ES): m/z = 261 [M – H]–. HRMS (EI): m/z calcd for
C14H19N2O3: 263.1396; found: 263.1384. Anal. Calcd for
C14H18N2O3 (%): C, 64.10; H, 6.92; N, 10.68. Found: C,
64.00; H, 6.95; N, 10.59.
(8) For recent applications, see: (a) Wermuth, U. D.; Jenkins, I.
D.; Bott, R. C.; Byriel, K. A.; Smith, G. Aust. J. Chem. 2004,
57, 461. (b) Micová, J.; Steiner, B.; Koós, M.; Langer, V.;
Gyepesová, D. Carbohydr. Res. 2003, 338, 1917.
(c) Micová, J.; Steiner, B.; Koós, M.; Langer, V.;
Gyepesová, D. Synlett 2002, 1715.
(9) A similar approach has been used to improve and extend
other multicomponent reactions, see: (a) Simoneau, C. A.;
Ganem, B. Tetrahedron 2005, 61, 11374. (b) Simoneau, C.
A.; George, E. A.; Ganem, B. Tetrahedron Lett. 2006, 47,
1205.
(10) Weiberth, F. J.; Hall, S. S. J. Org. Chem. 1987, 52, 3901; and
references cited therein.
(11) Wakefield, B. J. The Chemistry of Organolithium
Compounds; Pergamon: Oxford, 1974.
(12) Lower conversion was observed when the quantities of KCN
and (NH4)2CO3 were reduced.
(13) Experimental Method (Using RLi).
In a flame dried ACE thick-walled pressure tube under
nitrogen, are successively added THF (1 mL) and the
organolithium reagent (1.2 mmol). The solution is cooled to
0 °C whereupon the nitrile (1.0 mmol) is added. The reaction
Synlett 2006, No. 14, 2203–2206 © Thieme Stuttgart · New York