5112
Inorg. Chem. 1996, 35, 5112-5113
Oxidation of Tricarbonylmolybdacarborane. 1. First Examples of Oxomolybda(VI)carboranes
Jae-Hak Kim, Eunkee Hong, Jinkwon Kim,† and Youngkyu Do*
Department of Chemistry and Center for Molecular Science, Korea Advanced Institute of Science and Technology,
Taejon 305-701, Korea, and Department of Chemistry, Kongju National University, Kongju 314-701, Korea
ReceiVed February 29, 1996
The chemistry of transition metal oxo complexes has drawn
considerable interest due to its relevance to metal-centered
oxygen-transfer reactions in biological systems,1 metal-catalyzed
oxidation processes for industrial catalysts,2 and the synthesis
of high oxidation state organometallics.3 Synthesis of oxometals
has been achieved by various means,4 including oxidative
decarbonylation,3d,5 and hydrolysis followed by air oxidation.3b,3c,6
In particular, cyclopentadienyl ligands, among others, have been
used very often as ancillary ligands because of their ability to
stabilize both low and high formal oxidation states.5a On the
other hand, the dicarbollide anion [nido-7,8-C2B9H11]2-, which
is isolobal with the η5-cyclopentadienyl ligands, has not been
employed in synthesizing metal oxo complexes in spite of its
Figure 1. Molecular structure of [(η5-C2B9H11)Mo(CO)2(SPh)2]2- (2)
known ability to stabilize higher formal oxidation states in
showing the atom-labeling scheme.
metallacarborane complexes.7 Consequently, a synthetic search
for oxometallacarboranes was undertaken. The work reported
legged piano-stool” coordination geometry about the molybde-
herein includes stepwise oxidation of [(η5-C2B9H11)Mo(CO)3]2-
num atom with two thiolates and two carbonyl groups consisting
(1)8 to [(η1-C2B9H11)MoO3]2- (3) and [(η5-C2B9H11)O2Mo(µ-
of a cis square base. The symmetry of anion 2 approaches Cs
O)MoO2(η5-C2B9H11)]2- (4) via [(η5-C2B9H11)Mo(CO)2(SPh)2]2-
with a plane containing Mo3, B6, B8, and B10 atoms as well
(2) as well as the molecular structures of three oxidized products.
as bisecting the C1-C2 bond. While the Mo-S bond distances
To a yellow solution of 1(NMe4)2 (460 mg, 1.0 mmol) in
in 2 are similar to those found in the analogous cyclopentadienyl
CH3CN was added 1 equiv of solid phenyl disulfide, resulting
in a prompt color change from yellow to dark red. The reaction
mixture was stirred for 12 h and filtered. The filtrate was treated
complex [TlMo(SC6F5)2(CO)2(Cp)], the C-O distances (1.166-
(11), 1.235(10) Å) in 2 are slightly longer than those (1.116-
(21), 1.121(22) Å) of the latter.11 This is in good agreement
with the lower carbonyl stretching frequencies observed for 2
compared to the Cp analog. In contrast to the anion 1 with
zero formal oxidation state, the oxidized species 2, where Mo
with an excess amount of THF, affording analytically pure dark
red microcrystalline 2(NMe4)2 in 48% yield.9a The molecular
structure of the anion 2,10a shown in Figure 1, reveals a “four-
is in the formal oxidation state of +2, undergoes a well-behaved
* To whom all correspondence should be addressed at the Korea
oxidative decarbonylation reaction.
Advanced Institute of Science and Technology.
† Kongju National University.
A dark red solution of 2(NMe4)2 (650 mg, 1.0 mmol) in CH3-
(1) (a) Enemark, J. H.; Young, C. G. AdV. Inorg. Chem. 1993, 40, 1. (b)
Holm, R. H.; Berg, J. M. Acc. Chem. Res. 1986, 19, 363.
(2) (a) Holm, R. H. Chem. ReV. 1987, 87, 1401. (b) Basset, J.; Gates, B.
C.; Candy, J.; Choplin, A.; Leconte, M.; Quignard, F.; Santin, C.
Surface Organometallic Chemistry: Molecular Approaches to Surface
Catalysis; Kluwer Academic Publishers: Dordrecht, The Netherlands,
Boston, MA, and London, 1988.
(3) (a) Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1988, 27, 1297.
(b) Rau, M. S.; Kretz, C. M.; Mercando, L. A.; Geoffroy, G. L. J.
Am. Chem. Soc. 1991, 113, 7420. (c) Rau, M. S.; Kretz, C. M.;
Geoffroy, G. L.; Rheingold, A. L. Organometallics 1993, 12, 3447.
(d)Wolowiec, S.; Kochi, J. K. Inorg. Chem. 1991, 30, 1215.
(4) (a) Bottomley, F. Polyhedron 1992, 11, 1707. (b) Bottomley, F.; Sutin,
L. AdV. Organomet. Chem. 1988, 28, 339.
(5) (a) Klahn-Oliva, A. H.; Sutton, D. Organometallics 1984, 3, 1313.
(b) Herrmann, W. A.; Serrano, R.; Bock, H. Angew. Chem., Int. Ed.
Engl. 1984, 23, 383. (c) Wieghardt, K.; Pomp, C.; Nuber, B.; Weiss,
J. Inorg. Chem. 1986, 25, 1659. (d) Faller, J. W.; Ma, Y. J.
Organomet. Chem. 1988, 340, 59. (e) Leoni, P.; Pasquali, M.; Salsini,
L.; di Bugno, C.; Braga, D.; Sabatino, P. J. Chem. Soc. Dalton Trans.
1989, 155. (f) Harper, J. R.; Rheingold, L. J. Am. Chem. Soc. 1990,
112, 4037.
(6) Bottomley, F.; Boyle, P. D.; Karslioglu, S.; Thompson, R. C.
Organometallics 1993, 12, 4090.
(7) (a) Wilson, R. J.; Warren, L. F., Jr.; Hawthorne, M. F. J. Am. Chem.
Soc. 1969, 91, 758. (b) Wing, R. M. J. Am. Chem. Soc. 1968, 90,
4828. (c) Clair, D. St.; Zalkin, A.; Templeton, D. H. J. Am. Chem.
Soc. 1970, 92, 1173.
(8) (a) Hawthorne, M. F.; Young, D. C.; Andrews, T. D.; Howe, D. V.;
Pilling, R. L.; Pitts, A. D.; Reintjes, M.; Warren, L. F., Jr.; Wegner,
P. A. J. Am. Chem. Soc. 1968, 90, 879. (b) The structure of compound
1 was determined crystallographically in our group and will be reported
in due course.
CN was treated with a 4-fold molar amount of iodosylbenzene.
(9) (a) Data for 2(NMe4)2: Anal. Calcd for C24H45N2B9O2S2Mo: C,
44.28; H, 6.97; N, 4.30. Found. C, 44.02; H, 7.32; N, 4.01. IR (KBr,
cm-1): νBH ) 2582, 2542, 2523, 2489, 2447; νCO ) 1896, 1793. 1H
NMR (ppm, CD3CN): 3.10 (s, 24H, NMe4), 3.18 (br, 2H, carbonyl
CH), 7.4-6.7 (m, 10H, phenyl). 11B{1H} NMR (ppm, CD3CN): 1.33,
-5.96, -11.23, -13.52, -16.89, -19.92 (1:2:1:2:2:1). (b) Data for
3(NMe4)2: Anal. Calcd for C10H35N2B9O3Mo: C, 28.29; H, 8.31;
N, 6.60. Found. C, 27.72; H, 8.26; N, 6.51. IR (KBr, cm-1): νBH
) 2570, 2536, 2516, 2497, 2472, 2460; νModO ) 897, 855. 1H NMR
(ppm, DMSO-d6): 1.54 (br, 2H, carboranyl CH), 3.10 (s, 24H, NMe4).
11B{1H} NMR (ppm, DMSO-d6): -12.98, -17.66, -18.82, -20.46,
-37.92 (2:3:1:2:1). (c) Data for 4(Ph3P-p-xylyl-PPh3): Anal. Calcd
for C48H60B18O5P2Mo2: C, 49.47; H, 5.19. Found. C, 48.95; H, 5.03.
IR (KBr, cm-1): νBH ) 2560, 2535, 2528, 2520; νModO ) 927, 878;
νMosOsMo ) 776. 1H NMR (ppm, DMSO-d6): 2.87 (br, 4H,
carboranyl CH), 5.07 (d, 4H, CH2), 6.75 (s, 4H, C6H4), 7.9-7.5 (m,
30H, phenyl). 11B{1H} NMR (ppm, DMSO-d6): -2.22, -5.50,
-9.91, -13.73, -20.89 (1:2:2:3:1).
(10) (a) Crystallographic data for 2(NMe4)2‚THF: monoclinic, P1121/b, a
) 10.307(1) Å, b ) 19.069(4) Å, c ) 19.608(2) Å, γ ) 95.67(1)°, V
) 3835.0(10) Å3, Z ) 4, R ) 0.0714. (b) Crystallographic data for
3(NMe4)2: orthorhombic, Pna21, a ) 20.104(2) Å, b ) 7.0278(5) Å,
c ) 30.648(3) Å, V ) 4330.1(7) Å3, Z ) 4, R ) 0.0881. (c)
Crystallographic data for 4‚(Ph3P-p-xylyl-PPh3): triclinic, P1h, a )
10.059(2) Å, b ) 10.701(2) Å, c ) 13.3998(14) Å, R ) 103.880(10),
â ) 96.61(2), γ ) 100.84(2)°, V ) 1355.8(3) Å3, Z ) 1, R ) 0.0285.
(11) (a) Bakar, W. A. W. A.; Davidson, J. L.; Lindsell, W. E.; MaCullough,
K. J.; Muir, K. W. J. Organomet. Chem. 1987, 322, C1. (b) Bakar,
W. A. W. A.; Davidson, J. L.; Lindsell, W. E.; MaCullough, K. J.;
Muir, K. W. J. Chem. Soc., Dalton Trans. 1989, 991.
S0020-1669(96)00223-6 CCC: $12.00 © 1996 American Chemical Society