10.1002/anie.202005341
Angewandte Chemie International Edition
COMMUNICATION
[6]
Chiral Co catalysis, see: (a) H. Wen, X. Wan, Z. Huang, Angew. Chem.
Int. Ed. 2018, 57, 6319; Angew. Chem. 2018, 130, 6427; (b) J. Guo, H.
Wang, S. Xing, X. Hong, Z. Lu, Chem. 2019, 5, 881.
moderate to good yields with high diastereo- and
enantioselectivity under very mild condition. In addition, gram-
scale synthesis and applications demonstrated the potential of
this approach. Further exploiting application of this chiral
organosilanes and the development of new approaches for the
synthesis of enantioenriched organosilanes are currently under
way in our laboratory.
[7] Chiral Sc catalysis, see: G. Zhan, H.-L. Teng, Y. Luo, S.-J. Lou, M. Nishiura,
Z. Hou, Angew. Chem. Int. Ed. 2018, 57, 12342; Angew. Chem. 2018,
130, 12522.
[8] a) R. Shintani, K. Moriya, T. Hayashi, J. Am. Chem. Soc. 2011, 133, 16440;
b) R. Shintani, K. Moriya, T. Hayashi, Org. Lett. 2012, 14, 2902; b) R.
Shintani, R. Takano, K. Nozaki, Chem. Sci. 2016, 7, 1205; c) M. Onoe,
K. Baba, Y. Kim, Y. Kita, M. Tobisu, N. Chatani, J. Am. Chem. Soc. 2012,
134, 19477; d) R. Shintani, E. E. Maciver, F. Tamakuni, T. Hayashi, J.
Am. Chem. Soc. 2012, 134, 16955; e) Q.-W. Zhang, K. An, L.-C. Liu, Q.
Zhang, H. Guo, W. He, Angew. Chem. Int. Ed. 2017, 56, 1125; Angew.
Chem. 2017, 129, 1145. f) R. Shintani, H. Kurata, K. Nozaki, Chem.
Commun. 2015, 51, 11378. g) H. Chen, Y. Chen, X. Tang, S. Liu, R.
Wang, T. Hu, Z. Song, Angew. Chem. Int. Ed. 2019, 58, 4695; Angew.
Chem. 2019, 131, 4743. h) X.-B. Wang, Z.-J. Zheng, J.-L. Xie, X.-W. Gu,
Q.-C. Mu, G.-W. Yin, F. Ye, Z. Xu, L.-W. Xu, Angew. Chem. Int. Ed. 2020,
59, 790; Angew. Chem. 2020, 132, 800. An example of Ni-catalyzed
construction of chiral silicon-stereogenic centers via cleavage of Si–C
bond, see: i) R. Kumar, Y. Hoshimoto, H. Yabuki, M. Ohashi, S. Ogoshi.
J. Am. Chem. Soc. 2015, 137, 11838.
Acknowledgements
We thank the NSFC (Grants 21801039, 21672033, 21831002),
Jilin Educational Committee
( JJKH20190269KJ),
the
Fundamental Research Funds for the Central Universities
(2412018QD007), and the Ten Thousand Talents Program for
generous financial support.
Keywords: copper catalysis
desymmetrization • protoboration
•
chiral organosilane
•
[9]
C-H bond activation reactions, see: a) R. Shintani, H. Otomo, K. Ota, T.
Hayashi, J. Am. Chem. Soc. 2012, 134, 7305; b) Y. Sato, C. Takagi, R.
Shintani, K. Nozaki, Angew. Chem. Int. Ed. 2017, 56, 9211; Angew.
Chem. 2017, 129, 9339; [2+2+2] cycloadditionreactions, see: c) R.
Shintani, C. Takagi, T. Ito, M. Naito, K. Nozaki, Angew. Chem. Int. Ed.
2015, 54, 1616; Angew. Chem. 2015, 127, 1636; d) R. Shintani, R.
Takano, K. Nozaki, Chem. Sci. 2016, 7, 1205.
[1]
a) C. E. Masse, J. S. Panek, Chem. Rev. 1995, 95, 1293. b) M. A. Brook
in Silicon in Organic, Organometallic, and Polymer Chemistry, Wiley,
New York, 2000, pp. 115-137; c) M. Oestreich, Synlett 2007, 1629; d) A.
Weickgenannt, M. Mewald, M. Oestreich, Org. Biomol. Chem. 2010, 8,
1497; e) L.-W. Xu, L. Li, G.-Q. Lai, J.-X. Jiang, Chem. Soc. Rev. 2011,
40, 1777; f) J. O. Bauer, C. Strohmann, Eur. J. Inorg. Chem. 2016, 2868;
g) K. Igawa, K. Tomooka, in Organosilicon Chemistry: Novel Approaches
and Reactions (Eds.: T. Hiyama, M. Oestreich), Wiley-VCH, Weinheim,
2020, pp. 495-532.
[10]
a) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457; b) A. Suzuki, H.
C. Brown, Organic Syntheses via Boranes; Suzuki Coupling: Aldrich,
Milwaukee, WI, 2003, Vol. 3; c) T. Hayashi, K. Yamasaki, Chem. Rev.
2003, 103, 2829; d) N. Miyaura, Bull. Chem. Soc. Jpn. 2008, 81, 1535;
e) K. Semba, T. Fujihara, J. Terao, Y. Tsuji, Tetrahedron 2015, 71, 2183.
[2]
a) R. Tacke, U. Wannagat in Bioactive Organo-Silicon Compounds,
Springer, Berlin, Heidelberg, 1979; b) R. Tacke, T. Kornek, T. Heinrich,
C. Burschka, M. Penka, M. Pülm, C. Keim, E. Mutschler, G. Lambrecht,
J. Organomet. Chem. 2001, 640,140; c) M. W. Mutahi, T. Nittoli, L. Guo,
S. M. Sieburth, J. Am. Chem. Soc. 2002, 124, 7363; d) E. Rémond, C.
Martin, J. Martinez, F. Cavelier, Chem. Rev. 2016, 116, 11654. e) Y.
Kawakami, Y. Kakihana, O. Ooi, M. Oishi, K. Suzuki, S. Shinke, K.
Uenishi, Polym. Int. 2009, 58, 279; f) S. Koga, S. Ueki, M. Shimada, R.
Ishii, Y. Kurihara, Y. Yamanoi, J. Yuasa, T. Kawai, T.-a. Uchida, M.
Iwamura, K. Nozaki, H. Nishihara, J. Org. Chem. 2017, 82, 6108. g) T.
Ikeno, T. Nagano, K. Hanaoka, Chem. Asian J. 2017, 12, 1435.
[11] For reviews, see: a) J. Chen, J. Guo, Z. Lu, Chin. J. Chem. 2018, 36,
1075; b) J. Chen, Z. Lu, Org. Chem. Front. 2018, 5, 260; c) X. Zeng,
Chem. Rev. 2013, 113, 6864; d) T. Fujihara, K. Semba, J. Terao, Y. Tsuji,
Catal. Sci. Technol. 2014, 4, 1699; e) Y. Tsuji, T. Fujihara, Chem. Rec.
2016, 16, 2294; f) A.-M. Carroll, T. P. O’Sullivan, P. J. Guiry, Adv. Synth.
Catal. 2005, 347, 609; g) C. M. Crudden, D. Edwards. Eur. J. Org. Chem.
2003, 4695; h) S. P. Thomas, V. K. Aggarwal, Angew. Chem. Int.
Ed. 2009, 48, 1896; Angew. Chem. 2009, 121, 1928; i) J. V. Obligacion,
P. J. Chirik, Nat. Rev. Chem. 2018, 2, 15. (j) J.-B. Chen, A. Whiting.
Synthesis 2018, 50, 3843; k) M. L. Shegavi, S. K. Bose. Catal. Sci.
Technol. 2019, 9, 3307; l) D. Wei, C. Darcel. Chem. Rev. 2019, 119,
2550. m) M. Sawamura, H. Ito, in Copper-Catalyzed Asymmetric
Synthesis; (Eds.: A. Alexakis, N. Krause, S. Woodword) Wiley-VCH,
Weinheim, 2014, pp. 157-177; n) A. Hensel, M. Oestreich, in Progress
in Enantioselective Cu(I)-catalyzed Formation of Stereogenic
Centers (Ed.: S. R. Harutyunyan), Springer, Top. Organomet.
Chem. 2016, 58, pp. 135-167.
[3] a) L.-W. Xu, Angew. Chem. Int. Ed. 2012, 51, 12932; Angew. Chem. 2012,
124, 13106; b) R. Shintani, Asian, J. Org. Chem. 2015, 4, 510; c) Y.-M.
Cui, Y. Lin, L.-W. Xu, Coord. Chem. Rev. 2017, 330, 37; d) R. Shintani,
Synlett 2018, 29, 388.
[4]
[5]
R. J. P. Corriu, J. J. E. Moreau, Tetrahedron Lett. 1973, 14, 4469.
a) R. J. P. Corriu, J. J. E. Moreau, J. Organomet. Chem. 1974, 64, C51;
b) T. Hayashi, K. Yamamoto, M. Kumada, Tetrahedron Lett. 1974, 15,
331; c) R. J. P. Corriu, J. J. E. Moreau, J. Organomet. Chem. 1976, 120,
337; d) T. Ohta, M. Ito, A. Tsuneto, H. Takaya, J. Chem. Soc. Chem.
Commun. 1994, 2525; e) K. Tamao, K. Nakamura, H. Ishii, S. Yamaguchi,
M. Shiro, J. Am. Chem. Soc. 1996, 118, 12469; f) D. R. Schmidt, S. J.
O’Malle, J. L. Leighton, J. Am. Chem. Soc. 2003, 125, 1190; g) Y.
Yasutomi, H. Suematsu, T. Katsuki, J. Am. Chem. Soc. 2010, 132, 4510;
h) Y. Kurihara, M. Nishikawa, Y. Yamanoi, H. Nishihara, Chem. Commun.
2012, 48, 11564; i) K. Igawa, D. Yoshihiro, N. Ichikawa, N. Kokan, K.
Tomooka, Angew. Chem. Int. Ed. 2012, 51, 12745; Angew. Chem. 2012,
124, 12917; j) Y. Kuninobu, K. Yamauchi, N. Tamura, T. Seiki, K. Takai,
Angew. Chem. Int. Ed. 2013, 52, 1520; Angew. Chem. 2013, 125, 1560;
k) Y. Naganawa, T. Namba, M. Kawagishi, H. Nishiyama, Chem. Eur. J.
2015, 21, 9319; l) M. Murai, H. Takeshima, H. Morita, Y. Kuninobu,
KTakai, J. Org. Chem. 2015, 80, 5407; m) M. Murai, Y. Takeuchi, K.
Yamauchi, Y. Kuninobu, K. Takai, Chem. Eur. J. 2016, 22, 6048; n) L.
Chen, J.-B. Huang, Z. Xu, Z.-J. Zheng, K.-F. Yang, Y.-M. Cui, J. Cao, L.-
W. Xu, RSC Adv. 2016, 6, 67113.
[12] F. Meng, H. Jang, A. H. Hoveyda, Chem. Eur. J. 2013, 19, 3204.
[13] a) Z. Wang, X. He, R. Zhang, G. Zhang, G. Xu, Q. Zhang, T. Xiong, Q.
Zhang. Org. Lett. 2017, 19, 3067; b) G. Xu, H. Zhao, B. Fu, A. Cang, G.
Zhang, Q. Zhang, T. Xiong, Q. Zhang. Angew. Chem. Int. Ed. 2017, 56,
13130; Angew. Chem. 2017, 129, 13310; c) G. Zhang, A. Cang, Y. Wang,
Y. Li, G. Xu, Q. Zhang, T. Xiong, Q. Zhang. Org. Lett. 2018, 20, 1798; d)
G. Xu, B. Fu, H. Zhao, Y. Li, G. Zhang, Y. Wang, T. Xiong, Q. Zhang.
Chem. Sci. 2019, 10, 1802; e) B. Fu, X. Yuan, Y. Li, Y. Wang, Q. Zhang,
T. Xiong, Q. Zhang. Org. Lett. 2019, 21, 3576.
[14]
V. K. Aggarwal, M. Binanzer, M. C. de Ceglie, M. Gallanti, B. W.
Glasspoole, S. J. F. Kendrick, R. P. Sonawane, A. Váazquez-Romero,
M. P. Webster. Org. Lett. 2011, 13, 1490.
[15] We found that 2a can’t be transformed into alcohol under the same
oxidation conditions, might owing to the steric hindrance.
4
This article is protected by copyright. All rights reserved.