C O M M U N I C A T I O N S
Scheme 2
In conclusion, we have revealed that the reaction of a N-
acyliminium ion pool with a benzylsilane proceeds by a chain
mechanism involving oxidative C-Si bond cleavage. The success
of the binary system consisting of a stoichiometric amount of a
benzylsilane of high oxidation potential and a catalytic amount of
a more easily oxidized benzylstannane opens a new possibility of
promoting organometallic reactions that are otherwise difficult to
achieve. Further work aiming at elucidation of the detailed
mechanism and development of synthetic applications is in progress.
Acknowledgment. This work was partially supported by a
Grant-in-Aid for Scientific Research.
Supporting Information Available: Experimental procedures and
spectroscopic data of compounds (PDF). This material is available free
Scheme 3
References
(1) For example: (a) Kochi, J. K. Acc. Chem. Res. 1974, 7, 351. (b) Kochi,
J. K. Organometallic Mechanism and Catalysis; Academic Press: New
York. 1978.
(2) Early examples of electron-transfer driven cleavage of a C-Si bond: (a)
Tamao, K.; Yoshida, J.; Murata, M.; Kumada, M. J. Am. Chem. Soc. 1980,
102, 3267. (b) Yoshida, J.; Tamao, K.; Kumada, M.; Kawamura, T. J.
Am. Chem. Soc. 1980, 102, 3269.
(3) (a) Yoshida, J.; Suga, S.; Suzuki, S.; Kinomura, N.; Yamamoto, A.;
Fujiwara, K. J. Am. Chem. Soc. 1999, 121, 9546. (b) Suga, S.; Suzuki,
S.; Yamamoto, A.; Yoshida, J. J. Am. Chem. Soc. 2000, 122, 10244. (c)
Suga, S.; Suzuki, S.; Yoshida, J. J. Am. Chem. Soc. 2002, 124, 30. (d)
Yoshida, J.; Suga, S. Chem.sEur. J. 2002, 8, 2650. (e) Suga, S.; Watanabe,
M.; Yoshida, J. J. Am. Chem. Soc. 2002, 124, 14824. (f) Suga, S.; Nishida,
T.; Yamada, D.; Nagaki, A.; Yoshida, J. J. Am. Chem. Soc. 2004, 126,
14338. (g) Okajima, M.; Suga, S.; Itami, K.; Yoshida, J. J. Am. Chem.
Soc. 2005, 127, 6930. (h) Suga, S.; Matsumoto, K.; Ueoka, K.; Yoshida,
J. J. Am. Chem. Soc. 2006, 128, 7710.
(4) Reduction of iminium ions: (a) Conant, J. B.; Sloan, A. W. J. Am. Chem.
Soc. 1923, 45, 2466. (b) Andrieux, C. P.; Save´ant, J.-M. J. Electroanal.
Chem. 1970, 26, 223.
(5) (a) Traylor, T. G.; Hanstein, W.; Berwin, H. J.; Clinton, N. A.; Brown,
R. S. J. Am. Chem. Soc. 1971, 93, 5715. (b) Brown, R. S.; Eaton, D. F.;
Hosomi, A.; Traylor, T. G.; Wright, J. M. J. Organomet. Chem. 1974,
66, 249. (c) Giordan, J. C. J. Am. Chem. Soc. 1983, 105, 6544. (d) Bock,
H. Angew. Chem., Int. Ed. Engl. 1989, 28, 1627. (e) Yoshida, J.; Nishiwaki,
K. J. Chem. Soc., Dalton Trans. 1998, 2589.
(6) Photoinduced, electron transfer between iminium ion and benzylsilane:
Lan, A. J. Y.; Heuckeroth, R. O.; Mariano, P. S. J. Am. Chem. Soc. 1987,
109, 2738.
(7) Initiation of a chain process by concerted electron transfer-bond breaking
has been postulated in thermal SRN1 reactions. Costentin, C.; Hapiot, P.;
Me´debielle, M.; Save´ant, J.-M. J. Am. Chem. Soc. 1999, 121, 4451.
(8) (a) Baciocchi, E.; Del Giacco, T.; Elisei, F.; Ioele, M. J. Org. Chem. 1995,
60, 7974. (b) Cermenati, L.; Freccero, M.; Venturello, P.; Albini, A. J.
Am. Chem. Soc. 1995, 117, 7869. (c) Fukuzumi, S.; Fujita, M.; Noura,
S.; Ohkubo, K.; Suenobu, T.; Araki, Y.; Ito, O. J. Phys. Chem. A 2001,
105, 1857. (d) Fukuzumi, S.; Satoh, N.; Okamoto, T.; Yasui, K.; Suenobu,
T.; Seko, Y.; Fujitsuka, M.; Ito, O. J. Am. Chem. Soc. 2001, 123, 7756.
(e) Dockery, K. P.; Dinnocenzo, J. P.; Farid, S.; Goodman, J. L.; Gould,
I. R.; Todd, W. P. J. Am. Chem. Soc. 1997, 119, 1876.
silicon,11 the attack of BF4-, which is the counteranion of 1, on
silicon seems to play a significant role. Benzyl radical 6 thus
generated adds to N-acyliminium ion 1 to give radical cation 7.12,13
We have already reported that an alkyl radical adds N-acyliminium
ion pools very rapidly.14 Radical cation 7 undergoes a SET reaction
with benzylsilane 2 to give the coupling product 3 and radical cation
4, which collapses to benzyl radical 6. It is interesting that the
present mechanism can be seen as the “umpolung” of the SRN1
mechanism.15
(9) (a) Yoshida, J.; Murata, T.; Isoe, S. Tetrahedron Lett. 1986, 27, 3373. (b)
Koizumi, T.; Fuchigami, T.; Nonaka, T. Bull. Chem. Soc. Jpn. 1989, 62,
219.
As we have reported previously, DFT calculations indicated that
the reduction of 7 to give 3 is thermodynamically more favorable
than the reduction of 1 to radical 5.14 In other words, the radical
cation 7 is a stronger oxidant than the cation 1. This idea prompted
us to examine the following hypothesis: The use of a catalytic
amount of benzylstannane 8, which is more easily oxidized than
benzylsilane 2, as an initiator might lead to an effective chain
reaction of benzylsilanes of high oxidation potentials. Radical cation
7, which is generated by the reaction of 8 and 1, might initiate the
propagation cycle shown in Scheme 3. The hypothesis works. For
example, the reaction of 2e with 1 in the presence of 0.1 equiv of
8e gave rise to the formation of coupling product 3e in high yield
(Table 1, run 8). Even p-fluorobenzylsilane 2a, which has the
highest oxidation potential among those examined, reacted with 1
in the presence of 8e under the slow addition condition to give the
desired coupling product 3a together with 3e (runs 2 and 3). It is
important to note that the success of the present binary system also
supports the proposed chain mechanism.
(10) (a) Baciocchi, E.; Crescenzi, M.; Fasella, E.; Mattioli, M. J. Org. Chem.
1992, 57, 4684. (b) Hirao, T.; Morimoto, C.; Takada, T.; Sakurai, H.
Tetrahedron 2001, 57, 5073.
(11) (a) Dinnocenzo, J. P.; Farid, S.; Goodman, J. L.; Gould, I. R.; Todd, W.
P.; Mattes, S. L. J. Am. Chem. Soc. 1989, 111, 8973. (b) de Lijser, H. J.
P.; Snelgrove, D. W.; Dinnocenzo, J. P. J. Am. Chem. Soc. 2001, 123,
9698.
(12) (a) Minisci, F.; Fontana, F.; Pianese, G.; Yan, Y. M. J. Org. Chem. 1993,
58, 4207. (b) Clerici, A.; Porta, O. Tetrahedron Lett. 1990, 31, 2069. (c)
Cannella, R.; Clerici, A.; Pastori, N.; Regolini, E.; Porta, O. Org. Lett.
2005, 7, 645. (d) Miyabe, H.; Ueda, M.; Naito, T. Synlett 2004, 1140.
(13) Non-oxidative radical cation generation: Taxil, E.; Bagnol, L.; Horner,
J. H.; Newcomb, M. Org. Lett. 2003, 5, 827.
(14) (a) Maruyama, T.; Suga, S.; Yoshida, J. J. Am. Chem. Soc. 2005, 127,
7324. (b) Maruyama, T.; Suga, S.; Yoshida, J. Tetrahedron 2006, 62,
6519.
(15) (a) Kornblum, N. Angew. Chem., Int. Ed. Engl. 1975, 14, 734. (b) Bunnett,
J. F. Acc. Chem. Res. 1978, 11, 413. (c) Save´ant, J.-M. Acc. Chem. Res.
1980, 13, 323. (d) Bowman, W. R. Chem. Soc. ReV. 1988, 17, 283. (e)
Save´ant, J.-M. Acc. Chem. Res. 1993, 26, 455. (f) Austin, E.; Ferrayoli,
C. G.; Alonso, R. A.; Rossi, R. A. Tetrahedron 1993, 49, 4495. (g)
Save´ant, J.-M. J. Phys. Chem. 1994, 98, 3716. (h) Save´ant, J.-M.
Tetrahedron 1994, 50, 10117. (i) Galli, C.; Gentili, P.; Rappoport, Z. J.
Org. Chem. 1994, 59, 6786.
JA068589A
9
J. AM. CHEM. SOC. VOL. 129, NO. 7, 2007 1903