D
Y. Hirai, Y. Uozumi
Letter
Synlett
(3) For a pioneering study on C–P coupling reaction of arylhalides
and dicyclohexylphosphine, see: Murada, M.; Buchwald, S. L.
Tetrahedron 2004, 60, 7397.
[PdCl(η3-C3H5)]2/L1
(10 mol% Pd)
+
2
KOH, H2O
100 °C
(4) For studies on cross-coupling in water with polymeric palla-
dium complexes from the author’s group (selected publica-
tions), see for Suzuki–Miyaura coupling: (a) Uozumi, Y.; Danjo,
H.; Hayashi, T. J. Org. Chem. 1999, 64, 3384. (b) Uozumi, Y.;
Nakai, Y. Org. Lett. 2002, 4, 2997. Heck reaction: (c) Uozumi, Y.;
Kimura, T. Synlett 2002, 2045. Sonogashira reaction:
(d) Uozumi, Y.; Kobayashi, Y. Heterocycles 2003, 59, 71. Asym-
metric alkylation: (e) Uozumi, Y.; Shibatomi, K. J. Am. Chem. Soc.
2001, 123, 2919. Asymmetric cross-coupling: (f) Uozumi, Y.;
Matsuura, Y.; Arakawa, T.; Yamada, Y. M. A. Angew. Chem. Int.
Ed. 2009, 48, 2708. Sonogashira coupling: (g) Suzuka, T.; Okada,
Y.; Ooshiro, K.; Uozumi, Y. Tetrahedron 2010, 66, 1064. Allylic
arylation: (h) Sarkar, S. M.; Uozumi, Y.; Yamada, Y. M. A. Angew.
Chem. Int. Ed. 2011, 50, 9437. Suzuki–Miyaura coupling:
(i) Yamada, Y. M. A.; Sarkar, S. M.; Uozumi, Y. J. Am. Chem. Soc.
2012, 134, 3190. Heck reaction: (j) Sato, T.; Sarkar, S. M.;
Uozumi, Y.; Yamada, Y. M. A. ChemCatChem 2015, 7, 2141.
Hiyama coupling: (k) Ohtaka, A.; Kotera, T.; Sakon, A.; Ueda, K.;
Hamasaka, G.; Uozumi, Y.; Shinagawa, T.; Shimomura, O.;
Nomura, R. Synlett 2016, 27, 1202. Asymmetric C–C coupling:
(l) Uozumi, Y.; Matsuura, Y.; Suzuka, T.; Arakawa, Y.; Yamada, Y.
M. A. Synthesis 2017, 49, 59.
Br
PCy2
1p
3p 81%
O
[PdCl(η3-C3H5)]2/L1
(10 mol% Pd)
O
N
N
+
2
KOH, H2O
100 °C
Br
PCy2
1q
3q 82%
Scheme 4 Preparation of synthetically useful phosphines
In summary, we have developed a novel C–P bond-form-
ing catalytic protocol with an amphiphilic polymeric palla-
dium complex of the sterically demanding alkylphosphine
ligand L1; the reaction was carried out in water under het-
erogeneous conditions to realize a high level of chemical
greenness. The synthetic utility of this protocol was
demonstrated by the preparation of the catalytically useful
aryl(dicyclohexyl)phosphines 3p and 3q. Although the
range of tolerated phosphine substrates is currently limited
to dicyclohexylphosphine,15 further synthetic applications
of this C–P coupling, in particular the expansion of its sub-
strate tolerance toward alkylphosphines, is currently under
investigation in our laboratory, and will be reported in due
course.
(5) (a) Hirai, Y.; Uozumi, Y. Chem. Asian J. 2010, 5, 1788. (b) Hirai,
Y.; Uozumi, Y. Chem. Commun. 2010, 45, 1103.
(6) Hirai, Y.; Uozumi, Y. Chem. Lett. 2011, 40, 934.
(7) For recent reviews on heterogeneous-switching of transition-
metal catalysis, see: (a) Uozumi, Y. Immobilized Catalysts Solid
Phases, Immobilization and Applications, In Topics in Current
Chemistry;
2
V4o2.
l
Kirschning, A., Ed.; Springer: Berlin, 2004, 77; DOI:
10.1007/b96874. (b) Guinó, M.; Hii, K. K. M. Chem. Soc. Rev.
2007, 36, 608. (c) Wang, Z.; Chen, G.; Ding, K. Chem. Rev. 2009,
109, 322. (d) Lu, J.; Toy, P. H. Chem. Rev. 2009, 109, 815.
(e) Lamblin, M.; Nassar-Hardy, L.; Hierso, J.-C.; Fouquet, E.;
Felpin, F.-X. Adv. Synth. Catal. 2010, 352, 33. (f) Hierso, J.-C.;
Uozumi, Y. Synlett 2016, 27, 1177.
Funding Information
(8) For recent reviews on aqueous-switching of organic reactions,
see: (a) Jessop, P. G. Green Chem. 2011, 13, 1391. (b) Simon, M.-
O.; Li, C.-J. Chem. Soc. Rev. 2012, 41, 1415. (c) Dixneuf, P. H.;
Cadierno, V. Metal-Catalyzed Reactions in Water; Wiley-VCH:
Weinheim, 2013. (d) Zhang, F.; Li, H. Chem. Sci. 2014, 5, 3695.
(9) It has been reported that coordination ability of tricyclohexyl-
phosphine to palladium is 580 times larger than dicyclohexyl-
phenylphosphine to indicate high coordinating potential of PS-
PEG-supported trialkylphosphine lighands. Minakawa, M.;
Takenaka, K.; Uozumi, Y. Eur. J. Inorg. Chem. 2007, 1629.
(10) (a) Van Allen, D.; Venkataraman, D. J. Org. Chem. 2003, 68, 4591.
(b) Gelman, D.; Jiang, L.; Buchwald, S. L. Org. Lett. 2003, 5, 2315.
(c) Tani, K.; Behenna, D. C.; McFadden, R. M.; Stoltz, B. M. Org.
Lett. 2007, 9, 2529. (d) Zhang, H.; Zhang, X.-Y.; Dong, D.-Q.;
Wang, Z.-L. RCS Adv. 2015, 65, 52824.
This work was supported by the ACCEL program, which is sponsored
by the JST. We also acknowledge the financial support for this work
provided by the JSPS (Grant-in-Aid for Scientific Research on Innova-
tive Area #2707 ‘Middle Molecular Strategy’).
)(
Supporting Information
Supporting information for this article is available online at
S
u
p
p
o
nrtIo
g
f
rmoaitn
S
u
p
p
ortiInfogrmoaitn
References and Notes
(1) For recent reviews on C–P cross coupling, see: (a) Tappe, F. M. J.;
Trepohl, V. T.; Oestreich, M. Synthesis 2010, 3037. (b) Glueck, D.
S. Top. Organomet. Chem. 2010, 31, 65. (c) Berger, O.; Petit, C.;
Deal, E. L.; Montchamp, J.-L. Adv. Synth. Catal. 2013, 335, 1361.
(2) For studies on C–P coupling reactions with palladium catalysis,
see: (a) Machnitzki, P.; Nickel, T.; Stelzer, O.; Landgrafe, C. Eur. J.
Inorg. Chem. 1998, 1029. (b) Kwong, F. Y.; Chan, K. S. Chem.
Commun. 2000, 1069. (c) Damian, K.; Clarke, M. L.; Cobley, C. J.
Appl. Organometal. Chem. 2009, 23, 272; see also ref. 1c.
(11) Cai, D.; Hughes, D. L.; Verhoeven, T. R.; Reider, P. J. Tetrahedron
Lett. 1995, 36, 7991.
(12) General Procedure for the Catalytic Phosphinylation of
Haloarenes
A mixture of L1 (480 mg, 0.10 mmol of P), [PdCl(η3-C3H5)]2 (9
mg, 0.025 mmol), arylhalides (1, 0.55 mmol), and dicyclohexyl-
phosphine (2, 99 mg, 0.50 mmol) in 20 M KOH aqueous solution
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–E