Rhodium Chemzymes
A R T I C L E S
Table 1. Kinetic Parameters for Selected Catalytic Reactions
Exhibiting Saturation Kinetics
understanding of these reactions is complicated by the highly
reactive nature of the intermediates, their low concentrations,
and the multitude of potential reaction pathways. In some cases,
these reaction pathways have been analyzed using theoretical
methods.24 Initial mechanistic study of the catalytic reactions
of diazo compounds by rhodium carboxylates was performed
by Hubert and Noels.25 The kinetic parameters of the cyclo-
propanation of styrene with ethyl diazoacetate (EDA) catalyzed
by rhodium acetate were determined to be ∆Hq ) 15.0 ( 0.6
kcal/mol and ∆Sq ) -3.1 ( 2 eu (0 °C). They also determined
that this reaction is first order in catalyst. Subsequently, Alonso
and Garc´ıa examined the rhodium acetate-catalyzed C-H
insertion reaction of ethyl diazoacetate into dioxane and
determined that the reaction is first order in EDA.26 The kinetic
parameters were determined to be ∆H q ) 16.4 ( 1.4 kcal/mol
and ∆S q ) -25 ( 4 eu. The large negative entropy of activation
for this reaction was attributed to a rate-determining step that
does not involve nitrogen loss. These workers postulated a
mechanism in which the rhodium acetate dimer is split to give
a catalytically active monomeric catalyst. However, splitting
of the dimer is not now widely believed to be involved in the
mechanism.
Km
(mM)
k
cat /Km
reaction
kcat (s-1
)
(M-1 s-1
)
ref
acrylamide/HRuCl(diop)2
acrylamide/[HRuCl(PPh3)2]2
flavin mimic/NADH analogue
thiol/cobalt-phthalocyanine
thiol/iron-phthalocyanine
0.32 8.60 × 10-3 2.7 × 10
9
9
0.67 1.10 × 10-3 1.6
101
3.65 × 10-5 3.61 × 10-4 10
44.4 3.13 × 10-3 7.05 × 10-2 11
9.64 6.75 × 10-4 7.00 × 102
11
12
13
14
15
styrene/asymmetric dihydroxylation 17
2.60 × 10-1 1.5 × 10
copper polymer/phosphate hydrolysis 8.77 4 × 10-2
5
Cu-catalyzed Diels-Aldera
0.86 2.56 × 10-3 2.97
Mo-catalyzed olefin epoxidation
48
53.3
1.1 × 103
a The kobs for this bimolecular reaction was scaled by 1 mM cyclopen-
tadiene.
Scheme 1
Yates’ model for diazo compound transformation can be
applied to the catalytic cycle for rhodium(II) catalysts. If the
first step is a reversible equilibrium complexation of the
negatively polarized carbon of the diazocompound with the
rhodium(II) catalyst and the second is a rate-determining loss
of dinitrogen (Scheme 1), these processes should obey saturation
kinetics. This study first aimed to evaluate this possibility; if
Michaelis-Menten behavior could be shown, determination of
the influence of catalyst and reactant structure on kinetic
properties would be undertaken. These could contribute to
understanding of the process of diazo loss, elucidate the role of
the metal in facilitating the process, and identify the presence
of any intermediates. Other concepts from Michaelis-Menten
Several reviews of transition metal catalysis in carbenoid
chemistry, particularly rhodium catalysis, are available.16-18 The
currently accepted mechanism of these reactions was first
proposed by Yates (Scheme 1)19 and invokes nucleophilic attack
by the diazo compound on the electrophilic metal. After loss
of nitrogen, the carbenoid reacts with an electron-rich substrate
X and regenerates the catalyst. The dirhodium(II) carboxylates
possess a “lantern” structure, with the two rhodium atoms
surrounded by four carboxylates in a nominal D4 symmetry and
bearing two open axial coordination sites. Two extensive reviews
of rhodium(II) complexes are available.20
(19) Yates, P. J. Am. Chem. Soc. 1952, 74, 5376-81.
(20) (a) Felthouse, T. R. Prog. Inorg. Chem. 1982, 29, 74-166. (b) Jardine, F.
H.; Sheridan, P. S. In Comput. Coord. Chem.; Wilkinson, G., Ed.; Pergamon
Press: New York, 1987; Vol. IV, pp 934-1083.
The current understanding of the mechanisms of reactions
of diazo compounds catalyzed by dirhodium(II) carboxylates
is certainly incomplete, with the primary studies based on
relative reactivity comparisons between potential substrates and
inferences about the reactive species. Studies of regioselectiv-
ity,21 enantioselectivity,22 and chemoselectivity23 in rhodium-
mediated reactions have shown that an impressive degree of
control can be exerted by the ligands. True mechanistic
(21) (a) Doyle, M. P.; Westrum, L. J.; Wolthuis, W. N. E.; See, M. M.; Boone,
W. P.; Bagheri, V.; Pearson, M. M. J. Am. Chem. Soc. 1993, 115, 958-
64. (b) Taber, D. F.; Hennessy, M. J.; Louey, J. P. J. Org. Chem. 1992,
57, 436-41. (c) Taber, D. F.; Hoerner, R. S. J. Org. Chem. 1992, 57, 441.
(d) Hashimoto, S.; Watanabe, N.; Ikegami, S. Tetrahedran Lett. 1992, 33,
2709-12. (e) Ceccherelli, P.; Curini, M.; Marcotullio, M. C.; Rosati, O.
Tetrahedran 1991 47, 7403-8. (f) Doyle, M. P.; Pieters, R. J.; Taunton,
J.; Pho, H. Q.; Padwa, A.; Hertzog, D. L.; Precedo, L. J. Org. Chem. 1991,
56, 820. (g) Demonceau, A.; Noels, A. F.; Hubert, A. J. Tetrahedron 1990,
46, 3889-96. (h) Doyle, M. P.; Bagheri, V.; Wandless, T. J.; Harn, N. K.;
Brinker, D. A.; Eagle, C. T.; Loh, K. J. Am. Chem. Soc. 1990, 112, 1906-
12. (i) Doyle, M. P.; Bagheri, V.; Pearson, M. M.; Edwards, J. D.
Tetrahedron Lett. 1989, 30, 7001-4. (j) Demonceau, A.; Noels, A. F.;
Hubert, A. J.; Teyssie´, P. Bull. Chem. Soc. Belg. 1984, 93, 945-8.
(22) For reviews see: Doyle, M. P. Recl. TraV. Chim. Pays-Bas 1991, 110,
305-16. Brunner, H. Angew. Chem., Int. Ed. Engl. 1992, 31, 1183-5.
(23) (a) Padwa, A.; Austin, D. J.; Price, A. T.; Semones, M. A.; Doyle, M. P.;
Protopopova, M. N.; Winchester, W. R.; Tran, A. J. Am. Chem. Soc. 1993,
115, 8669-80. (b) Padwa, A.; Austin, D. J.; Hornbuckle, S. F.; Semones,
M. A.; Doyle, M. P.; Protopopova, M. N. J. Am. Chem. Soc. 1992, 114,
1874-6. (c) Reference 21b. (d) Hashimoto, S.; Watanabe, N.; Ikegami, S.
J. Chem. Soc., Chem. Commun. 1992, 1508-10. (e) Doyle, M. P.; Taunton,
J.; Pho, H. Q. Tetrahedron Lett. 1989, 30, 5397-400. (f) Cox, G. G.;
Moody, C. J.; Austin, D. J.; Padwa, A. Tetrahedron 1993, 49, 5109-26.
(g) Doyle, M. P.; Pieters, R. J.; Taunton, J.; Pho, H. Q.; Padwa, A.; Hertzog,
D. L.; Precedo, L. J. Org. Chem. 1991, 56, 820-9. (h) Doyle, M. P.;
Bagheri, V.; Wandless, T. J.; Harn, N. K.; Brinker, D. A.; Eagle, C. T.;
Loh, K. L. J. Am. Chem. Soc. 1990, 112, 1906-12.
(9) (a) Hui, B. C.; James, B. R. Can. J. Chem. 1974, 52, 3760-8. (b) James,
B. R.; Wang, D. K. W. Can. J. Chem. 1980, 58, 245-50. (c) James, B. R.;
Wang, D. K. W. J. Chem. Soc., Chem. Commun. 1977, 550-1. (d) Joshi,
A. M.; MacFarlane, K. S. James, B. R. J. Organomet. Chem. 1995, 488,
161-7.
(10) Shinkai, S.; Ishikawa, Y.; Shinkai, H.; Tsuno, T.; Makishima, H.; Ueda,
K.; Manabe, O. J. Am. Chem. Soc. 1984, 106, 1801-8.
(11) Hanabusa, K.; Ye, X.; Koyama, T.; Kurose, A.; Shirai, H.; Hojo, N. J.
Mol. Catal. 1990, 60, 127-34.
(12) Corey, E. J.; Noe, M. C. J. Am. Chem. Soc. 1996, 118, 319-29.
(13) Menger, F. M.; Tsuno, T. J. Am. Chem. Soc. 1989, 111, 4903-7.
(14) Otto, S.; Bertoncin, F.; Engberts, J. B. F. N. J. Am. Chem. Soc. 1996, 118,
7702-7.
(15) (a) Su, C.-C.; Reed, J. W.; Gould, E. S. Inorg. Chem. 1973, 12, 337-42.
(b) Arakawa, H.; Moro-oka, Y.; Ozaki, A. Bull. Chem. Soc. Jpn. 1974, 47,
2958-2961.
(16) Doyle, M. P. Chem. ReV. 1986, 86, 919-39.
(17) (a) Adams, J.; Spero, D. M. Tetrahedron 1991, 47, 1765-808. (b) Padwa,
A.; Krumpe, K. E. Tetrahedron 1992, 48, 5385-453.
(18) (a) Doyle, M. P. Acc. Chem. Res. 1986, 19, 348. (b) Padwa, A.; Hornbuckle,
S. F. Chem. ReV. 1991, 91, 263-309. (c) Maas, G. Top. Curr. Chem. 1987,
137, 75.
(24) Padwa, A.; Snyder, J. P.; Curtis, E. A.; Sheehan, S. M.; Worsencroft, K.
J.; Kappe, C. O. J. Am. Chem. Soc. 2000, 122, 8155-67.
(25) Anciaux, A. J.; Hubert, A. J.; Noels, A. F.; Petiniot, N.; Teyssie´, P. J.
Org. Chem. 1980, 45, 695-702.
(26) Alonso, M. E.; Garc´ıa, M. del C. Tetrahedron 1989, 45, 69-76.
9
J. AM. CHEM. SOC. VOL. 124, NO. 6, 2002 1015