5428 Inorganic Chemistry, Vol. 35, No. 19, 1996
Wycliff et al.
principles.14-16 Studies on the insertion reactions of Ir[(PR3)2-
(CO)(OR)] with CO show that the hard alkoxide ligand can be
readily replaced by the softer carbon monoxide.17 In this
connection, the reactions of metal alkoxides with heterocumu-
lenes are particularly illustrative of how reactions are based on
HSAB preferences.18-23 The iridium alkoxide hydride complex
Cp*Ir(PPh3)(OEt)(H) reacts with heterocumulenes (XdCdY,
X/Y ) O, S, NR) to give products having Ir-S or Ir-N bonds
like Cp*Ir[XC(Y)OEt](H)(PPh3), (where X ) S or NR)13 rather
than complexes with Ir-O bonds. Similarly the reactions of
copper(I) aryloxide with CS2 and PhNCS result in complexes
with Cu(I)-S and Cu(I)-N bonds.24 Both examples demon-
strate the affinity that late transition metal ions have toward
softer donor ligands. Not only do the metals maximize the soft-
soft interactions, the ligands around the metal also maximize
soft-soft and hard-hard interactions. A very good illustration
of the selectivity of the ligands toward hard and soft centers is
provided by the reaction of four-coordinate complexes of the
type [Mo(NR)2(OR)2] with PhNCO and PhNCS.25 PhNCO
undergoes insertion across the “hard” alkoxides to form two
N,O chelating carbamate ligands whereas PhNCS inserts across
one of the “softer” imido ligands to form a complex with a
chelating N,N-thioureato ligand. Further, PhNCS can be
displaced by PhNCO in the N,N-thioureato complex in order
to increase hard-hard interactions. Thus most reactions known
to date suggest the predictability of such insertion reactions on
the basis of HSAB principles. It would be interesting to probe
the limitations of this predictability.
late transition metal alkoxides insert into PhNCS or CS2, the
metal-sulfur (soft-soft) interaction would be stronger than the
corresponding metal-oxygen interaction formed from a CO2
insertion. So, the validity of extending the reactions of these
heterocumulenes to the reactions of CO2 has been challenged.39
The latter contention gains weightage from the fact that the
insertion of soft heterocumulenes is irreversible while several
insertion reactions of CO2 are reversible.40-43 One can then
ask, would it be possible to make heterocumulene reactions
reversible by electronic perturbations?
In this paper we report our recent findings on the insertion
reactions of copper(I) aryloxides with MeNCS that has relevance
to the two aspects mentioned above. MeNCS reacts with
copper(I) aryloxides to give [N-methylimino(aryloxy)methaneth-
iolato]copper(I) complexes, very similar to those isolated in the
corresponding reactions with PhNCS.24 The reactivity of Cu-
(I)-OAr with MeNCS is not altogether predictable from simple
HSAB principles as in the reactions of copper(I) aryloxides with
PhNCS or CS2. There appears to be a tendency for copper(I)
to balance the number of hard and soft donors in its coordination
sphere rather than maximize the number of soft donors. Recent
(27) (a) Darensbourg, D. J.; Rokicki, A. J. Am. Chem. Soc. 1982, 104,
349. (b) Chisholm, M. H.; Cotton, F. A.; Folting, K.; Huffman, J. C.;
Ratermann, A. L.; Shamshoum, E. S. Inorg. Chem. 1984, 23, 4423.
(c) Lee, G. R.; Maher, J. M.; Cooper, N. J. J. Am. Chem. Soc. 1987,
109, 2956. (d) Carmona, E.; Galindo, A.; Monge, A.; Munoz, M. A.;
Poveda, M. L.; Ruiuz, C. Inorg. Chem. 1990, 29, 5074.
(28) (a) Miguel, D.; Riera, V.; Miguel, J. A.; Gomez, M.; Solans, X.
Organometallics 1991, 10, 1683. (b) Schauer, S. J.; Eyman, D. P.;
Bernhardt, R. J.; Wolff, M. A.; Mallis L. M. Inorg. Chem. 1991, 30,
570.
A further reason for interest in these insertion reactions is
the potential relevance of these heterocumulenes to serve as
models for CO2.26-29 Heterocumulene insertion reactions have
been studied extensively30-38in this context. However, when
(29) (a) Jia, G.; Meek, D. W. Inorg. Chem. 1991, 30, 1953. (b) Shaver,
A.; Plouffe, P.-Y.; Bird, P.; Livingstone, E. Inorg. Chem. 1990, 29,
1826.
(14) (a) Blum, O.; Milstein, D. Angew. Chem., Int. Ed. Engl. 1995, 34,
229. (b) Rees, W. M.; Churchill, M. R.; Fettinger, J. C.; Atwood, J.
D. Organometallics 1985, 4, 2179.
(15) (a) Kim, Y.-J.; Osakada, K.; Sugitha, K.; Yamamoto, T.; Yamamoto,
A. Organometallics 1988, 7, 2182. (b) Bryndza, H. E. Organometallics
1985, 4, 406. (c) Bryndza, H. E. Organometallics 1985, 4, 1686. (d)
Alsters, P. L.; Boersma, J.; Smeets, W. J. J.; Spek, A. L.; van Koten,
G. Organometallics 1993, 12, 1639.
(30) (a) Thewissen, D. H. M. W. J. Org. Met. Chem. 1980, 188, 211. (b)
Thewissen, D. H. M. W.; van Gaal, H. L. M. J. Org. Met. Chem.
1979, 172, 69. (c) Vaira, M. D.; Rovai, D.; Stopponi, P. Polyhedron
1993, 12, 13. (d) Burgemeister, T.; Kasther, F.; Leitner, W. Angew.
Chem., Int. Ed. Engl. 1993, 32, 739.
(31) (a) Michelman, R. I.; Andersen, R. A.; Bergman, R. G. J. Am. Chem.
Soc. 1991, 113, 5100. (b) Yi, C. S.; Liu, N. Organometallics 1995,
14, 2616. (c) Scott, F.; Kruger, G. J.; Cronje, S.; Lombard, A.;
Raubenheimer, H. G.; Benn, R.; Rufinska, A. Organometallics 1990,
9, 1071. (d) Lee, G. R.; Cooper, N. J. Organometallics 1989, 8,
1538.
(16) (a) Whitesides, G. M.; Sadowski, J. S.; Lilburn, J. J. Am. Chem. Soc.
1974, 96, 2829. (b) Tsuda, T.; Hashimoto, T.; Saegusa, T. J. Am. Chem.
Soc. 1972, 94, 658.
(17) Randall, S. L.; Miller, C. A.; See, R. F.; Churchill, M. R.; Janik, T.
S.; Lake, C. H.; Atwood, J. D. Organometallics 1994, 13, 5088.
(18) (a) Darensbourg, D. J.; Mueller, B. L.; Reibenspies, J. H. J. Org. Met.
Chem. 1993, 451, 83. (b) Darensbourg, D. J.; Klausmeyer, K. K.;
Mueller, B. L.; Reibenspies, J. H. Angew. Chem., Int. Ed. Engl. 1992,
31, 1503. (c) Darensbourg, D. J.; Sanchez, K. M.; Reibenspies, J. H.;
Rheingold, A. L. J. Am. Chem. Soc. 1989, 111, 7094. (d) Jolly, M.;
Mitchell, J. P.; Gibson, V. C. J. Chem. Soc., Dalton Trans. 1992, 1329.
(e) Cotton, F. A.; Shamshoum, E. S. J. Am. Chem. Soc. 1985, 107,
4662. (f) Darensbourg, D. J.; Sanchez, K. M.; Rheingold, A. L. J.
Am. Chem. Soc. 1987, 109, 290. (g) Darensbourg, D. J.; Mueller, B.
L.; Reibenspies, J. H.; Bischoff, C. J. Inorg. Chem. 1990, 29, 1789.
(h) Darensbourg, D. J.; Mueller, B. L.; Reibenspies, J. H. J. Org. Met.
Chem. 1993, 451, 83. (i) Darensbourg, D. J.; Sanchez, K. M.;
Rheingold, A. L. J. Am. Chem. Soc. 1987, 109, 290.
(32) Cowan, R. L.; Trogler, W. C. J. Am. Chem. Soc. 1989, 111, 4750.
(33) (a) Brouwer, E. B.; Legzdins, P.; Rettig, S. J.; Ross, K. J. Organo-
metallics 1993, 12, 4234. (b) Darensbourg, D. J.; Wiegreffe, H. P.;
Reibenspies, J. H. Organometallics 1991, 10, 6. (c) Darensbourg,D.
J.; Jones, M. L. M.; Reibenspies, J. H. Inorg. Chem. 1993, 32, 4675.
(d) Darensbourg, D. J.; Joyce, J. A.; Rheingold, A. Organometallics
1991, 10, 3407.
(34) Adams, R. D.; Chen, L.; Wu, W. Organometallics 1993, 12, 2404.
(35) Gately, D. A.; Norton, J. R.; Goodson, P. A. J. Am. Chem. Soc. 1995,
117, 986.
(36) Vivanco, M.; Ruiz, J.; Floriani, C.; Cheisi-Villa, A.; Rizzoli, C.
Organometallics 1993, 12, 1794.
(37) (a) Bianchini, C.; Ghilhardi, C. A.; Meli, A.; Midollini, S.; Orlandini,
H. Inorg. Chem. 1985, 24, 924. (b) Bianchini, C.; Ghilhardi, C. A.;
Meli, A.; Midollini, S.; Orlandini, H. J. Org. Met. Chem. 1983, 248,
C13.
(19) (a) Simpson, R. D.; Bergman, R. G. Organometallics 1992, 11, 4308.
(b) Simpson, R. D.; Bergman, R. G. Angew. Chem., Int. Ed.. Engl.
1992, 31, 220.
(38) Belforte, A.; Calderazzo, F.; Englert, U.; Strahle, J. Inorg. Chem. 1991,
30. 3778.
(20) Braunstein, P.; Nobel, D. Chem. ReV. 1989, 89, 1927.
(21) Abe, H.; Inoue,S. J. Chem. Soc., Chem. Commun. 1994, 1197.
(22) Newman, L. J.; Bergman, R. G. J. Am. Chem. Soc. 1985, 107, 5314.
(23) (a) Seligson, A. L.; Cowan, R. L.; Trogler, W. C. Inorg. Chem. 1991,
30, 3371. (b) Kim, Y.-J.; Osakada, K.; Sugita, K.; Yamamoto, T.;
Yamamoto, A. Organometallics 1988, 7, 2182.
(24) (a) Abraham, S. P.; Narasimhamurthy, N.; Nethaji, M.; Samuelson,
A. G. Inorg. Chem. 1993, 32, 1739. (b) Narasimhamurthy, N.;
Samuelson, A. G.; Manohar, H. J. Chem. Soc., Chem. Commun. 1989,
1803. (c) Narasimhamurthy, N. Ph.D. Thesis, Indian Institute of
Science, Bangalore, India.
(39) Darensbourg, D. J.; Mueller, B. L.; Bischoff, C. J.; Chojnacki, S. S.;
Reibenspies, J. H. Inorg. Chem. 1991, 30, 2418.
(40) (a) Tsuda, T.; Sanada, S.; Saegusa, T. J. Org. Met. Chem. 1976, 116,
C10. (b) Tsuda, T.; Sanada, S.-I.; Ueda, K.; Saegusa, T. Inorg. Chem.
1976, 15, 2329. (c) Tsuda, T.; Chujo, Y.; Saegusa, T. J. Am. Chem.
Soc. 1980, 102, 431. (d) Tsuda, T.; Saegusa, T. Inorg. Chem. 1972,
11, 2561.
(41) Darensbourg, D. J.; Longridge, E. M.; Atnip, E. V.; Reibenspies, J.
H. Inorg. Chem. 1991, 30, 357.
(42) Kato, M.; Ito, T. Inorg. Chem. 1985, 24, 504.
(43) (a) Chisholm, M. H.; Reichert, W. W.; Cotton, F. A.; Murillo, C. A.
J. Am. Chem. Soc. 1977, 99, 1652. (b) Darensbourg, D. J.; Mueller,
B. L.; Reibenspies, J. H.; Bischoff, C. J. Inorg. Chem. 1990, 29,
1789.
(25) Gibson, V. C.; Redshaw, C.; Clegg, W.; Elsegood, M. R. J. J. Chem.
Soc., Chem. Commun. 1994, 2635.
(26) Ibers, J. A. Chem. Soc. ReV. 1982, 11, 57.