4056
S. Vidal et al. / Bioorg. Med. Chem. 10 (2002) 4051–4056
1.07/CHCl3). IR (CHCl3), n: 1660 cmꢀ1, 1728 cmꢀ1. 1H
NMR (CDCl3), d: 0.10, 0.12, 0.15 (3s, 27H, Si(CH3)3);
1.25 (t, 3H, J=7.1 Hz, OCH2CH3);3.32 (s, 3H, OC H3);
3.65–3.85 (m, 3H, H-2H-3 and H-4);4.09 (ddd, 1H,
J=1.7, 4.8, 8.5 Hz, H-5);4.21 (q, 2H, OC H2CH3);4.53
(d, 1H, J=1.4 Hz, H-1);6.16 (dd, 1H, J=15.7 Hz, H-7);
7.07 (dd, 1H, H-6). 13C NMR (CDCl3), d: 0.4–1.4
(Si(CH3)3);14.6 (OCH 2CH3);55.1 (O CH3);60.6
(OCH2CH3);71.8–73.8 (C-2, C-3, C-4 and C-5);102.4
References and Notes
1. Kornfeld, S. Annu. Rev. Biochem. 1992, 61, 307.
2. Stein, M.;Zijderhand-Bleekemolen, J. E.;Geuze, H.;Hasi-
lik, A.;von Figura, K. EMBO J. 1987, 6, 2677.
3. Kang, J. X.;Li, Y.;Leaf, A. Proc. Natl. Acad. Sci. U.S.A.
1998, 95, 13671.
4. (a) Schmidt, B.;Kiecke-Siemsen, C.;Waheed, A.;Braulke,
T.;von Figura, K. J. Biol. Chem. 1995, 270, 14975. (b) Mar-
ron-Terrada, P. G.;Brzycki-Wessel, M. A.;Dahms, N. M. J.
Biol. Chem. 1998, 273, 22358.
(C-1);122.0 (C-7);145.7 (C-6);166.7 (
CO2Et). 29Si
NMR (CDCl3), d: 17.6, 18.3, 19.9 (3s, Si(CH3)3). MS
(FAB>0, NBA), m/z: 551 [M+SiMe3]+, 501
[M+Na]+, 478 [M]+, 447 [MꢀOCH3]+, 73 [SiMe3]+.
5. Kang, J. X.;Bell, J.;Leaf, A.;Beard, R. L.;Chandraratna,
R. A. S. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 13687.
6. Vidil, C.;More re, A.;Garcia, M.;Barragan, V.;Ham-
daoui, B.;Rochefort, H.;Montero, J.-L. Eur. J. Org. Chem.
1999, 447, 447.
Ethyl [methyl (E)-6,7-dideoxy-ꢀ-D-manno-oct-6-enopyr-
anoside]uronate (7). Compound 6 (400 mg) was dissolved
in a solution of HCl (1 M in THF, 20 mL) and the mixture
was stirred for 5 min. The reaction was quenched with
saturated NaHCO3(aq) until the pH was 8–9. The aqueous
layer was extracted with CH2Cl2 (3ꢂ70 mL). The organic
layers were combined, dried (Na2SO4), filtered and con-
centrated under reduced pressure. Compound 7 (230 mg,
95%) was obtained pure as a colorless oil. Rf 0.65 (EtOAc/
MeOH 9:1). [a]D +65.0 (c 0.6/CH2Cl2). IR (CH2Cl2), n:
1716 cmꢀ1, 3410 cmꢀ1. 1H NMR (CDCl3), d: 1.25 (m, 3H,
OCH2CH3);3.34 (s, 3H, OC H3);3.58 (t, 1H, J=9.4 Hz, H-
4);3.78 (dd, 1H, H-3);3.92 (dd, 1H, J=1.4, 3.2 Hz, H-2);
4.05–4.25 (m, 3H, H-5 and OCH2CH3);4.45 (m, 1H, O H);
4.73 (d, 1H, H-1);4.83 (m, 1H, O H);4.91 (m, 1H, O H);
6.19 (dd, 1H, J=1.7, 15.8 Hz, H-7);7.11 (dd, 1H, J=4.5
Hz, H-6). 13C NMR (CDCl3), d: 13.1 (OCH2CH3);54.0
(OCH3);59.7 (O CH2CH3);69.0–70.2 (C-2, C-3, C-4 and C-
5);100.2 (C-1);120.9 (C-7);143.5 (C-6);166.2 ( CO2Et). MS
(FAB>0, NBA), m/z: 285 [M+Na]+, 263 [M+H]+, 231
[MꢀOCH3]+.
7. Tong, P. Y.;Kornfeld, S. J. Biol. Chem. 1989, 264, 7970.
8. Tong, P. Y.;Gregory, W.;Kornfeld, S. J. Biol. Chem. 1989,
264, 7962.
9. Kyle, J. W.;Nolan, C. M.;Oshima, A.;Sly, W. S. J. Biol.
Chem. 1988, 263, 16230.
10. Vidal, S.;Vidil, C.;More re, A.;Garcia, M.;Montero,
J.-L. Eur. J. Org. Chem. 2000, 3433.
11. Boren, H. B.;Eklind, K.;Garegg, P. J.;Lindberg, B.;
Pilotti, A. Acta Chem. Scand. 1972, 26, 4143.
12. Contreras, R. R.;Kamerling, J. P.;Vliegenthart, J. F. G.
Recl. Trav. Chim. Pays-Bas 1991, 110, 85.
13. Jacquinet, J.-C.;Sinay , P. Carbohydr. Res. 1987, 159, 229.
14. (a) Omura, K.;Swern, D. Tetrahedron 1978, 34, 1651. (b)
Mancuso, A. J.;Huan, S.-L.;Swern, D. J. Org. Chem. 1978,
43, 2480.
15. (a) Boutagy, J.;Thomas, R. Chem. Rev. 1974, 74, 87. (b)
Maryanoff, B. E.;Reitz, A. B. Chem. Rev. 1989, 89, 863.
16. Nouguier, R. C. R. Acad. Sci. Paris, Serie IIc, Chemistry
2000, 3, 373.
17. (a) Chen, K.-M.;Joullie , M. M. Tetrahedron Lett. 1984,
25, 393. (b) Kabir, A. K. M. S.;Brimacombe, J. S. Carbohydr.
Res. 1986, 152, 335. (c) Blattner, R., Ferrier, R.J. and Renner,
R. J. Chem. Soc., Chem. Commun. 1987, 1007. (d) Bessodes,
M.;Komiotos, D.;Antonakis, K.
J. Chem. Soc., Perkin
Sodium [methyl (E)-6,7-dideoxy-ꢀ-D-manno-oct-6-eno-
pyranoside]uronate (8). Compound 7 (60 mg) was dis-
solved in 2 M NaOH (6 mL). The mixture was stirred
for 1 h and neutralized with ion exchange resin (Dowex
50WX2, H+ form, 14 g) until the pH was 4–5. The resin
was washed with H2O (100 mL) and filtered off. The
filtrate was freeze dried from H2O affording 8 (56 mg,
95%) as a light brown foam. Rf 0.54 (i-PrOH/NH4OH/
Trans., 1, 1989, 41 (e) Barnes, J. C., Brimacombe, J. S. and
McDonald, G. J. Chem. Soc., Perkin Trans., 1, 1989, 1483 (f)
Stick, R. V.;Tilbrook, D. M. G. Aust. J. Chem. 1990, 43,
1643. (g) Duclos, O;Dureault, A;Depezay, J. C. Tetrahedron
Lett. 1992, 33, 1059. (h) Marshall, J. A.;Beaudoin, S. J. Org.
Chem. 1994, 59, 6614. (i) Shen, Q.;Sloss, D. G.;Berkowitz,
D. B. Synth. Commun. 1994, 24, 1519. (j) Kolb, H. C. Bioorg.
Med. Chem. Lett. 1997, 7, 2629. Sabitha, G.;Reddy, M. M.;
Snirivas, D.;Yadov, J. S. Tetrahedron Lett. 1999, 40, 165. (k)
Sabitha, G.;Reddy, M. M.;Snirivas, D.;Yadov, J. S. Tetra-
hedron Lett. 1999, 40, 165. (l) Posterma, M. H. D.;Calimente,
D. Tetrahedron Lett. 1999, 40, 4755. (m) Posterma, M. H. D.;
Calimente, D.;Liu, L.;Behrmann, T. L. J. Org. Chem. 2000,
65, 6061. (n) Jarosz, S.;Mach, M.;Frelek, J. J. Carbohydr.
Chem. 2000, 19, 693.
1
H2O 8:1:1). [a]D +52.0 (c1.0/H2O). H NMR (D2O), d:
3.28 (s, 3H, OCH3);3.47 (t, 1H, J=9.6 Hz, H-4);3.67
(dd, 1H, J=3.4 Hz, H-3);3.84 (dd, 1H, J=1.7 Hz, H-
2);3.95–4.10 (m, 1H, H-5);4.66 (d, 1H, H-1);6.04 (dd,
1H, J=0.9, 15.7 Hz, H-7);6.54 (dd, 1H, J=6.7 Hz, H-6).
13C NMR (D2O), d: 54.0 (OCH3);68.8–70.8 (C-2, C-3, C-
4 and C-5);100.2 (C-1);128.0 (C-7);138.7 (C-6);172.6
(CO2Na). MS (FAB>0, NBA), m/z: 257 [M+H]+. MS
(FAB<0, NBA), m/z: 233 [MꢀNa]ꢀ. C9H13NaO7
(256.06): calcd C 42.19, H 5.11;found C 41.75, H 5.29.
18. Vidil, C.;Vidal, S.;More re, A.;Montero, J.-L. Phospho-
rus, Sulfur and Silicon 2000, 158, 125.
19. Slodki, E.;Ward, R. M.;Boundy, J. A. Biochim. Biophys.
Acta 1973, 304, 449.
20. Barragan, V.;Menger, F. M.;Caran, K. L.;Vidil, C.;
Morere, A.;Montero, J.-L. Chem. Commun. 2001, 85.
21. Ferguson, M. W. J.;McNeight, D. L. PCT Int. Appl. WO
97 05, 883, 1997.
Acknowledgements
22. Perrin, D. D.;Amarego, W. L. F.
Laboratory Chemicals, 3rd ed.;Pergamon Press: New York,
1988.
23. Lemamy, G.-J.;Roger, P.;Mani, J.-C.;Robert, M.;
Rochefort, H.;Brouillet, J.-P. Int. J. Cancer 1999, 80, 896.
24. Laemmli, U. K. Nature 1970, 227, 680.
Purification of
We are grateful to the Fondation pour la Recherche
Medicale (to S.V.) and to the Conseil Scientifique de
l’Universite Montpellier II for financial support. We
also wish to thank Mayoly-Spindler Laboratories
(Chatou, France) for financial support.