3 M. J. Climent, A. Corma, H. Garcia, R. Guil-Lopez, S. Iborra and
V. Forne
4 E. Armengol, M. L. Cano, A. Corma, H. Garcı
´
s, J. Catal., 2001, 197, 385.
´
a and M. T.
Navarro, J. Chem. Soc., Chem. Commun., 1995, 519.
5 (a) M. Onaka and R. Yamasaki, Chem. Lett., 1998, 27, 259; (b) T.
Kugita, S. K. Jana, T. Owada, N. Hashimoto, M. Onaka and S.
Namba, Appl. Catal., A, 2003, 245, 353.
6 (a) B. R. Jermy and A. Pandurangan, J. Mol. Catal. A: Chem.,
2006, 256, 184; (b) M. W. C. Robinson and A. E. Graham,
Tetrahedron Lett., 2007, 48, 4247.
7 S. Ajaikumar and A. Pandurangan, J. Mol. Catal. A: Chem., 2007,
266, 1.
8 (a) R. Mokaya and W. Jones, J. Catal., 1997, 172, 211; (b) N.
Katada, H. Fujinaga, Y. Nakamura, K. Okumura, K. Nishigaki
and M. Niwa, Catal. Lett., 2002, 80, 47; (c) M. Onaka, N.
Hashimoto, Y. Kitabata and R. Yamasaki, Appl. Catal., A,
2003, 241, 307.
9 (a) R. J. H. Gregory, Chem. Rev., 1999, 99, 3649; (b) J.-M. Brunel
and I. P. Holmes, Angew. Chem., Int. Ed., 2004, 43, 2752; (c) F.-X.
Chen and X. Feng, Synlett, 2005, 892; (d) T. R. J. Achard, L. A.
Clutterbuck and M. North, Synlett, 2005, 1828.
10 (a) D. A. Evans, L. K. Truesdale and G. L. Carroll, J. Chem.
Soc., Chem. Commun., 1973, 55; (b) D. A. Evans and L. K.
Truesdale, Tetrahedron Lett., 1973, 14, 4929; (c) K. Iwanami, M.
Aoyagi and T. Oriyama, Tetrahedron Lett., 2005, 46, 7487; (d) K.
Iwanami, M. Aoyagi and T. Oriyama, Tetrahedron Lett., 2006, 47,
4741.
Fig. 2 Cyanohydrin trimethylsilyl ether yield during a continuous
flow reaction. Reaction conditions: benzaldehyde (6.7 wt%) and
TMSCN (1.05 equiv.) in CH2Cl2, Al-MCM-41 (100 mg, loaded in a
4 mm I.D. Â 30 mm Pyrex glass tube), flow rate (3.8 g hÀ1), room
temperature.
11 (a) S. Kobayashi, Y. Tsuchiya and T. Mukaiyama, Chem. Lett.,
1991, 20, 537; (b) L. Wang, X. Huang, J. Jiang, X. Liu and X.
Feng, Tetrahedron Lett., 2006, 47, 1581; (c) S. E. Denmark and W.
Chung, J. Org. Chem., 2006, 71, 4002.
12 (a) Y. Fukuda, Y. Maeda, S. Ishii, K. Kondo and T. Aoyama,
Synthesis, 2006, 589; (b) J. J. Song, F. Gallou, J. T. Reeves,
Z. Tan, N. K. Yee and C. H. Senanayake, J. Org. Chem., 2006,
71, 1273.
13 (a) X. Liu, B. Qin, X. Zhou, B. He and X. Feng, J. Am. Chem. Soc.,
2005, 127, 12224; (b) N. Kurono, M. Yamaguchi, K. Suzuki and T.
Ohkuma, J. Org. Chem., 2005, 70, 6530.
14 (a) K. Higuchi, M. Onaka and Y. Izumi, Bull. Chem. Soc. Jpn.,
1993, 66, 2016; (b) M. L. Kantam, P. Sreekanth and P. L. Santhi,
Green Chem., 2000, 2, 47; (c) B. Karimi and L. Ma’Mani, Org.
Lett., 2004, 6, 4813; (d) S. Huh, H.-T. Chen, J. W. Wiench, M.
Pruski and V. S.-Y. Lin, Angew. Chem., Int. Ed., 2005, 44, 1826; (e)
K. Yamaguchi, T. Imago, Y. Ogasawara, J. Kasai, M. Kotani and
N. Mizuno, Adv. Synth. Catal., 2006, 348, 1516.
15 The catalytic activity of amorphous SiO2–Al2O3 (Si/Al = 5 and 2)
greatly depended on the temperature of the pretreatment. When
the catalysts were pretreated in vacuo at 300 1C for 3 h, the pseudo-
first order rate constant increased from 1.7 Â 10À4 (in vacuo at
120 1C for 1 h) to 8.0 Â 10À3 minÀ1 for SiO2–Al2O3 (Si/Al = 5) and
from 1.7 Â 10À3 to 7.6 Â 10À3 minÀ1 for SiO2–Al2O3 (Si/Al = 2).
On the other hand, the influence of the pretreatment on the
catalytic activity of Al-MCM-41, MCM-41, amorphous SiO2–
Al2O3 (Si/Al = 20), and zeolites (H-Y and H-ZSM-5) was small.
16 Recentry, Olah et al. reported that DMF itself highly promotes the
cyanosilylation of aldehydes with TMSCN at room temperature
(G. K. S. Prakash, H. Vaghoo, C. Panja, V. Surampudi,
R. Kultyshev, T. Mathew and G. A. Olah, Proc. Natl. Acad. Sci.
U. S. A., 2007, 104, 3026). In our examination, when benzaldehyde
(1 mmol) was treated with TMSCN (5 mmol) in DMF (10 mL) at
0 1C without the Al-MCM-41 catalyst, the desired product was
obtained in 12% yield in 15 min.
quickly obtained from a wide range of aldehydes and ketones
under mild reaction conditions. This report clearly exhibits the
promising abilities of mesoporous aluminosilicates as catalysts
in organic synthesis, especially for fine chemicals synthesis.
The active sites over the Al-MCM-41 catalyst are presently
unclear, but the effective combination of both the activation of
carbonyl compounds by the acid sites arising from H/Al-
MCM-41 and the activation of trialkylsilyl cyanide by the
base sites possibly based on Na/Al-MCM-41 may be respon-
sible for the excellent catalytic activity. Further studies to
elucidate the acceleration mechanism of the Al-MCM-41
catalyst for cyanation are currently under way.
This research was financially supported by the Project of
‘‘Development of Microspace and Nanospace Reaction En-
vironment Technology for Functional Materials’’ of New
Energy and Industrial Technology Development Organization
(NEDO), Japan.
Notes and references
1 (a) Fine Chemicals Through Heterogeneous Catalysis, ed. R. A.
Sheldon and H. van Bekkum, Wiley-VCH, Weinheim, 2001; (b)
Special issue: Recoverable Catalysts and Reagents, ed. J. A. Gla-
dysz, Chem. Rev., 2002, 102, 3215; (c) A. Corma and H. Garcia,
Chem. Rev., 2003, 103, 4307.
2 (a) A. Corma, Chem. Rev., 1997, 97, 2373; (b) D. T. On, D.
Desplantier-Giscard, C. Danumah and S. Kaliaguine, Appl. Catal.,
A, 2003, 253, 545; (c) A. Taguchi and F. Schuth, Microporous
Mesoporous Mater., 2005, 77, 1.
¨
ꢀc
This journal is The Royal Society of Chemistry 2008
1004 | Chem. Commun., 2008, 1002–1004