L. Zhang, W. Liu, X. Zhao
SHORT COMMUNICATION
onate
1
(134 mg, 1 mmol) and diphenylphosphine oxide (2;
symmetrical allyl carbonates, which gave allylic phosphin-
ates.[5a] Upon using diisopropyl phosphonate (5) in such a
reaction in the presence of Pd2(dba)3 (1 mol-%) and
Xantphos[20] (2 mol-%) in THF at 85 °C, (E)-cinnamyl
methyl carbonate (4a) and allyl carbonates 4b–g with elec-
tron-donating groups (e.g., 4-Me and 3-MeO) or electron-
withdrawing groups (e.g., 4-F, 4-Cl, 3-F and 3-CF3) on the
phenyl ring gave linear products 6a–g[21] in moderate to ex-
cellent yields with high regioselectivities (Table 3, entries 1–
7). Additionally, naphthyl- and thienyl-substituted allyl
carbonates 4h and 4i also worked well (Table 3, entries 8
and 9). Unfortunately, (E)-methyl 5-phenylpent-2-enyl carb-
onate (4j) failed to undergo this reaction (Table 3, entry 10).
We found that diphenylphosphine oxide (2) was ineffective
in this reaction.
40.4 mg, 0.20 mmol) were added. The mixture was stirred at 55 °C.
Upon the completion of the reaction as monitored by TLC, the
mixture was filtered through Celite, and the solvent was removed
under reduced pressure. The crude residue was purified by flash
column chromatography (ethyl acetate/petroleum ether = 1:1) to
give product 3, and the enantioselectivity was determined by HPLC
analysis on a chiral stationary phase.
Supporting Information (see footnote on the first page of this arti-
cle): Optimization of the reaction conditions for the Pd-catalyzed
allylation reaction of 4 with 5; copies of the H NMR, 13C NMR,
1
31P NMR, and 19F NMR spectra for 3 and 6; and chiral HPLC
chromatograms for racemic and enantiopure allylic diphenylphos-
phine oxides.
Acknowledgments
Table 3. Pd-catalyzed allylation of (E)-methyl allyl carbonates 4
with diisopropyl phosphonate (5).[a]
The authors gratefully acknowledge the National Natural Science
Foundation of China (NSFC) (grant number 21272175) for gener-
ous financial support.
[1] For reviews and select papers, see: a) A. Saitoh, K. Achiwa, K.
Tanaka, T. Morimoto, J. Org. Chem. 2000, 65, 4227; b) Y. Tam-
aru, Eur. J. Org. Chem. 2005, 2647; c) B. M. Trost, D. L.
Van Vranken, Chem. Rev. 1996, 96, 395; d) M. Johannsen,
K. A. Jørgensen, Chem. Rev. 1998, 98, 1689; e) T. Hayashi, J.
Organomet. Chem. 1999, 576, 195; f) G. Helmchen, A. Pfaltz,
Acc. Chem. Res. 2000, 33, 336; g) L.-X. Dai, T. Tu, S.-L. You,
W.-P. Deng, X.-L. Hou, Acc. Chem. Res. 2003, 36, 659; h)
B. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103, 2921; i)
B. M. Trost, J. Org. Chem. 2004, 69, 5813; j) B. M. Trost, M. R.
Machacek, A. Aponick, Acc. Chem. Res. 2006, 39, 747; k) Z.
Lu, S. Ma, Angew. Chem. Int. Ed. 2008, 47, 258; Angew. Chem.
2008, 120, 264; l) M. Dieguez, O. Pamies, Acc. Chem. Res.
2010, 43, 312; m) W. Liu, X. M. Zhao, Synthesis 2013, 45, 2052.
[2] a) The allylic diphenylphosphine product was obtained in 15%
yield as a byproduct, see: J.-C. Fiaud, J. Chem. Soc., Chem.
Commun. 1983, 1055; b) A. Galkina, A. Buff, E. Schulz, L.
Hennig, M. Findeisen, G. Reinhard, R. Oehme, P. Welzel, Eur.
J. Org. Chem. 2003, 4640; c) K. Bravo-Alta-mirano, Z. Huang,
J.-L. Montchamp, Tetrahedron 2005, 61, 6315; d) P. Butti, R.
Rochat, A. D. Sadow, A. Togni, Angew. Chem. Int. Ed. 2008,
47, 4878; Angew. Chem. 2008, 120, 4956; e) A. Duraud, O. Jac-
quet, J.-C. Fiaud, R. Guillot, M. Toffano, ChemCatChem 2011,
3, 883.
Entry
R
6/7[b]
Product, yield[c] [%]
1
2
3
4
5
6
7
8
9
C6H5
4-MeC6H4
4-FC6H4
4-ClC6H4
3-MeOC6H4
3-FC6H4
3-CF3C6H4
2-nathphyl
2-thienyl
99:1
99:1
99:1
99:1
99:1
99:1
99:1
99:1
99:1
–
6a, 92
6b, 95
6c, 71
6d, 65
6e, 93
6f, 87
6g, 65
6h, 75
6i, 65
6j, -
10
PhCH2CH2
[a] Reaction conditions: Pd2(dba)3 (1 mol-%), xantphos (2 mol-%),
4 (0.2 mmol), 5 (0.24 mmol), THF (2 mL), 85 °C. [b] Determined
by analysis of the crude product by 1H NMR spectroscopy.
[c] Yield of isolated product.
[3] a) A. Börner, Phosphorus Ligands in Asymmetric Catalysis:
Synthesis and Applications, Wiley-VCH, Weinheim, Germany,
2008, vols. 1–3; b) P. C. J. Kamer, P. W. N. M. van Leeuwen,
Phosphorus(III) Ligands in Homogeneous Catalysis, Wiley,
Chichester, UK, 2012; c) N. F. Blank, J. R. Moncarz, T. J.
Brunker, C. Scriban, B. J. Anderson, O. Amir, D. S. Glueck,
L. N. Zakharov, J. A. Golen, C. D. Incarvito, A. L. Rheingold,
J. Am. Chem. Soc. 2007, 129, 6847; d) for a recent review, see:
J. F. Teichert, B. L. Feringa, Angew. Chem. Int. Ed. 2010, 49,
2486; Angew. Chem. 2010, 122, 2538.
[4] a) Y. Iwase, K. Kamada, K. Ohta, K. Kondo, J. Mater. Chem.
2003, 13, 1575; b) J. F. Hulvat, M. Sofos, K. Tajima, S. I. Stupp,
J. Am. Chem. Soc. 2005, 127, 366; c) B. W. Messmore, J. F.
Hulvat, E. D. Sone, S. I. Stupp, J. Am. Chem. Soc. 2004, 126,
14452; d) C. W. Wu, H. C. Lin, Macromolecules 2006, 39, 7985;
e) X. H. Ma, F. Ma, Z. H. Zhao, N. H. Song, J. P. Zhang, J.
Mater. Chem. 2009, 19, 2975; f) S. Furukawa, S. Haga, J. Ko-
bayashi, T. Kawashima, Org. Lett. 2014, 16, 3228; g) M. Capo-
rali, Eur. J. Inorg. Chem. 2014, 1565.
Conclusions
In summary, we developed the enantioselective Pd-cata-
lyzed allylation of diphenylphosphine oxide to give allyl-
ation products in acceptable to excellent yields with moder-
ate to excellent enantioselectivities. These are the first exam-
ples in which diphenylphosphine oxide is employed as a
phosphorus source in Pd-catalyzed asymmetric allylic sub-
stitution reactions.
Experimental Section
General Procedure for the Pd-Catalyzed Allylation of Diphenylphos-
phine Oxide: A mixture of Pd2(dba)3 (9.2 mg, 0.01 mmol), the
ligand (12.5 mg, 0.02 mmol), and toluene (2.0 mL) was stirred in a
dry Schlenk tube filled with argon for 30 min; then, allylic carb-
[5] a) L. V. Kochian, Nature 2012, 488, 466; b) F. Palacios, C.
Alonso, J. M. de Los Santos, Chem. Rev. 2005, 105, 899; c) F.
Palacios, C. Alonso, J. M. de Los Santos, in: Enantioselective
6848
www.eurjoc.org
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2014, 6846–6849