4
Tetrahedron Letters
9. Midya, G. C.; Kapat, A.; Maiti, S.; Dash, J. J. Org. Chem. 2015, 80,
and (pta-Bn)Cl (7 mg, 0.024 mmol) and the reaction mixture
4148-4151.
was stirred at 105 °C (bath temperature) for 20 h. The mixture
was cooled to room temperature, diluted with H2O (30 mL) and
extracted with EtOAc (20 mL). The organic layer was dried
(Na2SO4) and concentrated under reduced pressure. The crude
product was crystallized from EtOH to give pure 2d (85 mg,
82%). Similar reaction conditions were applied for the
preparation of 2e-h,j,k.
10. Tu, T.; Wang, Z.; Liu, Z.; Feng, X.; Wang, Q. Green Chem. 2012, 14,
921-924.
11. (a) Kovacs, J. A. Chem. Rev. 2004, 104, 825-848; (b) Kobayashi, M.;
Shimizu, S. Curr. Opin. Chem. Biol. 2000, 4, 95-102.
12. Bolyog-Nagy, E.; Udvardy, A.; Joó, F.; Kathó, Á. Tetrahedron Lett.
2014, 55, 3615-3617.
13. McMillan, K. G.; Tackett, M. N.; Dawson, A.; Fordyce, E.; Michael
Paton, R. Carbohydr. Res. 2006, 341, 41-48.
14. Somsák, L.; Bokor, É.; Czibere, B.; Czifrák, K.; Koppány, C.; Kulcsár,
L.; Kun, S.; Szilágyi, E.; Tóth, M.; Docsa, T.; Gergely, P. Carbohydr.
Res. 2014, 399, 38-48.
15. Buffel, D. K.; Simons, B. P.; Deceuninck, J. A.; Hoornaert, G. J. J. Org.
Chem. 1984, 49, 2165-2168.
16. DeShong, P.; Soli, E. D.; Slough, G. A.; Sidler, D. R.; Elango, V.;
Rybczynski, P. J.; Vosejpka, L. J. S.; Lessen, T. A.; Le, T. X.; Anderson,
G. B.; von Philipsborn, W.; Vöhler, M.; Rentsch, D.; Zerbe, O. J.
Organometallic Chem. 2000, 593-594, 49-62.
17. Somsák, L.; Sós, E.; Györgydeák, Z.; Praly, J.-P.; Descotes, G.
Tetrahedron 1996, 52, 9121-9136.
In summary, efficient chemoselective reaction conditions have
been developed for the hydration of glycosyl cyanides to C-
glycosyl formamide derivatives using a water soluble ruthenium
complex in aqueous media. These conditions can be considered
as practical alternatives to the existing protocols for this
transformation due to their environmental compatibility, mild
conditions, operational simplicity, high yields with excellent
chemoselectivity, and applicability in the presence of the acid
and base sensitive functional groups used in carbohydrate
derivatization.
18. Analytical data for the compounds which have not been reported earlier:
25
Compound 2c: Rf = 0.2 (hexane-EtOAc; 2:3); [α]D −53.1 (c 1.0,
1
CHCl3); H NMR (360 MHz, CDCl3): δ 6.46 (br s, 1 H, NH), 6.12 (br s,
Acknowledgments
1 H, NH), 5.40 (pseudo t, J = 8.0 Hz, 1 H, H-3), 5.32 (br s, 1 H, H-5),
5.13 (dd, J = 11.0, 3.5 Hz, 1 H, H-4), 4.09 (dd, J = 12.5, 4.0 Hz, 1 H, H-
6a), 3.84 (d, J = 8.0 Hz, 1 H, H-2), 3.77 (dd, J = 12.5, 2.5 Hz, 1 H, H-6b),
2.16, 2.08, 2.02 (3 s, 9 H, 3 COCH3); 13C NMR (90 MHz, CDCl3): δ
170.1, 169.9 (CONH2, COCH3), 76.7 (C-2), 70.7 (C-4), 67.9 (C-5), 67.3
(C-6), 66.8 (C-3), 20.8, 20.7, 20.5 (COCH3); ESI-MS: 326.0 [M+Na]+;
Anal. Calcd for C12H17NO8: C, 47.53; H, 5.65; N, 4.62. Found: C, 47.68;
H, 5.77; N, 4.69.
A.K.M. thanks the Indian National Science Academy (INSA), the
Hungarian Academy of Science (HAS), and Bose Institute,
Kolkata, India for financing his stay at the University of
Debrecen. The work was supported by the Hungarian Scientific
Research Fund (OTKA PD105808) as well as the BAROSS
REG_EA_09-1-2009-0028 (LCMS_TAN) project. Dr. A. Kiss-
Szikszai is thanked for recording the mass spectra and elemental
analyses.
25
Compound 2f: Rf = 0.2 (hexane-EtOAc; 3:2); [α]D −41.4 (c 1.0,
1
CHCl3); H NMR (360 MHz, CDCl3): δ 8.10-7.29 (m, 15 H, Ar-H), 6.47
(br s, 1 H, NH), 6.15-6.13 (m, 1 H, H-4), 5.82 (br s, 1 H, NH), 5.62 (dd, J
= 7.8, 2.4 Hz, 1 H, H-3), 5.50-5.45 (m, 1 H, H-5), 4.53 (d, J = 7.8 Hz, 1
H, H-2), 4.27 (dd, J = 9.3, 4.5 Hz, 1 H, H-6a), 4.04 (t, J = 9.3 Hz each, 1
H, H-6b); 13C NMR (90 MHz, CDCl3): δ 170.2, 165.2, 165.1 (CONH2,
PhCO), 133.5, 133.4, 133.2, 129.9, 129.8, 129.7, 129.5, 129.2, 129.0,
128.6, 128.4, 128.3 (Ar-C), 73.9 (C-2), 68.7 (C-3), 68.4 (C-4), 67.1 (C-
5), 63.8 (C-6); ESI-MS: 512.1 [M+Na]+; Anal. Calcd for C27H23NO8: C,
66.25; H, 4.74; N, 2.86. Found: C, 66.32; H, 4.80; N, 2.80.
References and notes
1. a) Somsák, L.; Czifrák, K.; Tóth, M.; Bokor, É.; Chrysina, E. D.;
Alexacou, K.-M.; Hayes, J. M.; Tiraidis, C.; Lazoura, E.; Leonidas, D.
D.; Zographos S. E.; Oikonomakos, N. G. Curr. Med. Chem. 2008, 15,
2933-2983; (b) Somsák, L.; Nagy, V.; Hadady, Z.; Docsa, T.; Gergely, P.
Curr. Pharm. Design, 2003, 9, 1177-1189; (c) Somsák, L. Comptes
Rendus Chimie 2011, 14, 211-223.
25
Compound 2m: Rf = 0.18 (hexane-EtOAc; 7:3); [α]D −21.8 (c 0.5,
1
CHCl3); H NMR (360 MHz, CDCl3): δ 8.05-7.38 (m, 15 H, Ar-H), 6.51
(br s, 1 H, NH), 6.30 (d, J = 2.7 Hz, 1 H, H-3), 6.12 (br s, 1 H, NH), 5.90
(strongly coupled m, 1 H, H-4), 5.81 (dd, J = 6.7, 5.3 Hz, 1 H, H-5),
4.85-4.81 (m, 1 H, H-6), 4.78-4.67 (m, 2 H, H-7ab); 13C NMR (90 MHz,
CDCl3): δ 166.1, 165.4, 165.0 (PhCO), 162.7 (CONH2), 146.5 (C-2),
133.7, 133.4 (2), 129.9, 129.8, 129.7, 129.3, 129.2, 128.8, 128.5 (2),
128.4 (Ar-C), 103.6 (C-3), 75.3 (C-4), 67.3 (C-5), 67.2 (C-6), 61.5 (C-7);
ESI-MS: 524.1 [M+Na]+; Anal. Calcd for C28H23NO8: C, 67.06; H, 4.62;
N, 2.79. Found: C, 67.30; H, 4.75; N, 2.76.
2. (a) Páhi, A.; Czifrák, K.; Kövér, K. E.; Somsák, L. Carbohydr. Res.
2015, 403, 192-201; (b) Bokor, É.; Szilágyi, E.; Docsa,T.; Gergely, P.;
Somsák, L.Carbohydr. Res. 2013, 381, 179-186; (c) Somsák, L.; Kovács,
L.; Tóth, M.; Ősz, E.; Szilágyi, L.;Györgydeák, Z.; Dinya, Z.; Docsa, T.;
Tóth, B.; Gergely, P. J. Med. Chem. 2001, 44, 2843-2848; (d) Bokor, É.;
Docsa, T.; Gergely, P.; Somsák, L. ACS Med. Chem. Lett. 2013, 4, 612-
615; (e) Felföldi, N.; Tóth, M.; Chrysina, E. D.; Charavgi, M.-D.;
Alexacou, K.-M.; Somsák, L. Carbohydr. Res. 2010, 345, 208-213; (f)
McMillan, K. G.; Tackett, M. N.; Dawson, A.; Fordyce, E.; Paton, R. M.
Carbohydr. Res. 2006, 341, 41-48; (g) Lichtenthaler, F. W.; Nakamura,
K.; Klotz, J. Angew. Chem. Int. Ed. Engl. 2003, 42, 5838-5843; (h) Kiss,
L.; Somsák, L. Carbohydr. Res. 1996, 291, 43-52; (i) Poonian, M. S.;
Nowoswiat, E. F. J. Org. Chem. 1980, 45, 203-208.
3. (a) Myers, R. W.; Lee, Y. C. Carbohydr. Res. 1986, 152, 143-158; (b)
Somsák, L.; Nagy, V. Tetrahedron: Asymmetry 2000, 11, 1719-1727.
4. BeMiller, J. N.; Yadav, M. P.; Kalabokis, V. N.; Myers, R. W.
Carbohydr. Res. 1990, 200, 111-126.
5. (a) Schaefer, F. C. In The Chemistry of the Cyano Group: Nitrile
Reactivity; Rappoport, Z., Ed.; Interscience: New York, 1970; pp 239-
305; (b) Bailey, P. D.; Mills, T. J.; Pettecrew, R. A. in Comprehensive
Organic Functional Group Transformations II; Katritzky, A. R.; Taylor,
R. J. K. Eds., Vol 5, Elsevier, Oxford, 2005, pp 201-294.
6. (a) Kukushkin, V. Y.; Pombeiro, A. J. L. Chem. Rev. 2002, 102, 1771-
1802; (b) Pombeiro, A. J. L.; Kukushkin, V. Y. Comprehensive
Coordination Chemistry II, 2004, 1, 639-660; (c) Yamaguchi, K.;
Matsushita, M.; Mizuno, N. Angew. Chem. Int. Ed. Engl. 2004, 43, 1576-
1580; (d) Ahmed, T. J.; Knapp, S. M. M.; Tyler, D. R. Coord. Chem.
Rev. 2011, 255, 949-974; (e) Garcia-Alvarez, R.; Francos, J.; Tomas-
Mendivil, E.; Crochet, P.; Cadierno, V. J. Organometallic Chem. 2014,
771, 93-104.
7. (a) Tamura, M.; Wakasugi, H.; Shimizu, K. -I.; Satsuma, A. Chem. Eur.
J. 2011, 17, 11428-11431; (b) Liu, Y. -M.; He, L.; Wang, M.-M.; Cao,
Y.; He, H.-Y.; Fan, K.-N.; ChemSusChem 2012, 5, 1392-1396; (c)
Hirano, T.; Uehara, K.; Kamata, K.; Mozuno, N. J. Am. Chem. Soc.
2012, 134, 6425-6433; (d) Battilocchio, C.; Hawkins, J. M.; Ley, S. V.
Org. Lett. 2014, 16, 1060-1063.
8. Matsuoka, A.; Isogawa, T.; Morioka, Y.; Knappett, B. R.; Wheatley, A.
E. H.; Saito, S.; Naka, H. RSC Adv. 2015, 5, 12152-12160.