MHz) 15.1 (C-3), 15.2 (CH3CH2), 20.3 (C-2Љ), 56.2 and 57.5
(OCH3), 60.4 (CH3CH2), 70.0 (C6H5CH2), 76.3 (C-2), 78.3
(C-1), 94.2 (C-1Љ), 99.5 (C-6Ј),a 99.7 (C-3Ј),a 105.1 (C-8Ј),a
113.6 (C-8Јa),b 116.9 (C-4Јa),b 127.9 (C-2ٞ and C-6ٞ),c 128.0
(C-4ٞ), 128.6 (C-3ٞ and C-5ٞ),c 129.6 (C-2Ј), 136.8 (C-1ٞ),
144.5 (C-1Ј), 150.1 (C-4Ј), 157.2 (C-7Ј)d and 157.8 (C-5Ј);d
δC (minor diastereomer; 126 MHz) 14.4 (C-3), 15.2 (CH3CH2),
20.6 (C-2Љ), 56.2 and 57.6 (OCH3), 60.7 (CH3CH2), 70.0
(C6H5CH2), 76.1 (C-2), 78.4 (C-1), 94.3 (C-1Љ), 99.0 (C-6Ј),a
99.7 (C-3Ј),a 105.4 (C-8Ј),a 113.6 (C-8Јa),b 116.9 (C-4Јa),b 127.9
(C-2ٞ and C-6ٞ),c 128.0 (C-4ٞ), 128.6 (C-3ٞ and C-5ٞ),c 129.6
(C-2Ј), 136.8 (C-1ٞ), 144.5 (C-1Ј), 150.1 (C-4Ј), 157.2 (C-7Ј)d
and 157.8 (C-5Ј);d m/z 456 (Mϩ, 3%), 438 (4), 410 (5), 394 (18),
366 (52), 350 (18), 275 (15), 247 (38), 231 (23), 91 (100) and 73
(18).
456 (Mϩ, 1%), 438 (2), 410 (2), 394 (19), 366 (31), 349 (18), 275
(28), 247 (51), 229 (19), 91 (100) and 65 (12).
Acknowledgements
We gratefully acknowledge receipt of an Australian Postgradu-
ate Research Award (C. A. J.) and financial support from the
Senates of Murdoch University and The University of Western
Australia.
References
1 J. F. Elsworth, R. G. F. Giles, I. R. Green, J. E. Ramdohr and S. C.
Yorke, J. Chem. Soc., Perkin Trans. 1, 1988, 2469.
2 D. W. Cameron, R. I. T. Cromartie, D. G. I. Kingston and Lord
Todd, J. Chem. Soc., 1964, 51.
3 (a) R. H. Thomson, Naturally Occurring Quinones, Academic Press,
London, 1971; (b) R. H. Thomson, Naturally Occurring Quinones
III, Recent Advances, Chapman and Hall, London, 1987; (c) R. H.
Thomson, Naturally Occurring Quinones IV, Recent Advances, 4th
edn., Blackie Academic and Professional, Chapman and Hall,
London, 1997.
(1R, 2R, 1ЉR)- and (1R, 2R, 1ЉS)-1-(7Ј-Benzyloxy-1Ј-hydroxy-
4Ј,5Ј-dimethoxy-2Ј-naphthyl)-2-(1Љ-ethoxyethoxy)propan-1-ol
6
Following the method described above for the preparation of
39, the freshly prepared naphthol 3 (326 mg, 1.05 mmol) in dry
ether (10 cm3) and dry tetrahydrofuran (4 cm3) was added to an
aliquot (0.43 cm3, containing 1.31 mmol) of ethylmagnesium
bromide in dry ether, resulting in a green solution, with further
treatment with the aldehyde 4 (0.63 g, approx. 3.02 mmol, 70%
pure). The crude product was obtained as a red oil (0.79 g).
TLC (30% ethyl acetate–hexane) showed minor spots at Rf 0.29
and on the baseline, which were minor decomposition products
seen repeatedly, and two major spots at Rf 0.14 and 0.09 for the
two diastereomers (at C-1Љ) of 6. These two diastereomers were
separable by chromatography and column chromatography
with 20–50% ethyl acetate–hexane gave:
1. Of Rf 0.14, one of the diastereomeric products 6, as a light
green solid (190 mg, 40%). Recrystallisation from methylene
chloride–hexane afforded deep cream needles (159 mg), mp 95–
96.5 ЊC (Found: C, 68.2; H, 7.7%; Mϩ 456.2169. C26H32O7
requires C, 68.4; H, 7.1%; M, 456.2148); [α]D Ϫ40.4 (c 0.3,
CHCl3); νmax/cmϪ1 3356 (OH), 1615, 1522, 1499, 1473 and 1456
4 (a) G. Casiraghi, M. Cornia, G. Casnati, G. G. Fava, M. F. Belicchi
and L. Zetta, J. Chem. Soc., Chem. Commun., 1987, 794; (b)
G. Casiraghi, M. Cornia and G. Rassu, J. Org. Chem., 1988, 53,
4919; (c) G. Casiraghi, M. Cornia, G. G. Fava, M. F. Belicchi and
L. Zetta, Carbohydr. Res., 1989, 186, 207; (d) F. Bigi, G. Casnati,
G. Sartori, G. Araldi and G. Bocelli, Tetrahedron Lett., 1989, 30,
1121; (e) F. Bigi, G. Casnati, G. Sartori, C. Dalprato and R.
Bortolini, Tetrahedron: Asymmetry, 1990, 1, 861.
5 T. Mukaiyama, Org. React., 1982, 28, 203.
6 W. Eisenhuth and H. Schmid, Helv. Chim. Acta, 1958, 41, 2021.
7 A preliminary account of some of this work has been reported
previously: R. G. F. Giles, C. A. Joll, M. V. Sargent and D. M. G.
Tilbrook, Tetrahedron Lett., 1996, 37, 7851.
8 R. G. F. Giles, A. B. Hughes and M. V. Sargent, J. Chem. Soc.,
Perkin Trans. 1, 1991, 1581.
9 R. G. F. Giles and C. A. Joll, unpublished results.
10 H. W. Dorn, W. H. Warren and J. L. Bullock, J. Am. Chem. Soc.,
1939, 61, 144.
11 J. March, Advanced Organic Chemistry: Reactions, Mechanisms and
Structure, McGraw-Hill, Japan, 4th edn., p. 1098, 1184.
12 E. J. Corey and A. Venkateswarlu, J. Am. Chem. Soc., 1972, 94,
6190.
13 P. P. Wickham, K. H. Hazen, H. Guo, G. Jones, K. Hardee Reuter
and W. J. Scott, J. Org. Chem., 1991, 56, 2045.
14 J. E. Baldwin and G. G. Haraldsson, Acta Chem. Scand., Ser. B,
1986, 40, 400.
15 J. Wu, J. L. Beal and R. W. Doskotch, J. Org. Chem., 1980, 45, 208.
16 R. O. Duthaler, P. A. Lyle and C. Heuberger, Helv. Chim. Acta,
1984, 67, 1406.
17 D. E. Pearson, R. D. Wysong and C. V. Breder, J. Org. Chem., 1967,
32, 2358.
18 T. M. Cresp, R. G. F. Giles, M. V. Sargent, C. Brown and D. O’N.
Smith, J. Chem. Soc., Perkin Trans. 1, 1974, 2435.
19 T. A. Chorn, R. G. F. Giles, I. R. Green, V. I. Hugo, P. R. K.
Mitchell and S. C. Yorke, J. Chem. Soc., Perkin Trans. 1, 1984, 1339.
20 T. Hiyama, K. Nishide and K. Kobayashi, Tetrahedron Lett., 1984,
25, 569.
21 Y. Ito, Y. Kobayashi, T. Kawabata, M. Takase and S. Terashima,
Tetrahedron, 1989, 45, 5767.
22 K. Hintzer, B. Koppenhoefer and V. Schurig, J. Org. Chem., 1982,
47, 3850.
23 B. Seuring and D. Seebach, Helv. Chim. Acta, 1977, 60, 1175.
24 M. K. Meilahn, C. N. Statham, J. L. McManaman and M. E.
Munk, J. Org. Chem., 1975, 40, 3551.
25 M. T. Reetz, Angew. Chem., Int. Ed. Engl., 1984, 23, 556.
26 K. Mead and T. L. Macdonald, J. Org. Chem., 1985, 50, 422.
27 G. Casiraghi, M. Cornia, G. Rassu, L. Zetta, G. G. Fava and
M. F. Belicchi, Carbohydr. Res., 1989, 191, 243 and references
therein.
28 R. G. F. Giles and C. A. Joll, J. Chem. Soc., Perkin Trans. 1, 1999,
3039.
29 A. Sonn and E. Patschke, Ber. Dtsch. Chem. Ges., 1925, 58, 1698.
30 J. Wu, J. L. Beal and R. W. Doskotch, J. Org. Chem., 1980, 45, 208.
31 L. R. Subramanian, M. Hanack, L. W. K. Chang, M. A. Imhoff,
P. v. R. Schleyer, F. Effenberger, W. Kurtz, P. J. Stang and T. E.
Dueber, J. Org. Chem., 1976, 41, 4099.
(C᎐C); δ (500 MHz) 1.04 (3H, d, J 6.4, 2-CH3), 1.30 (3H, t,
᎐
H
J 7.0, CH3CH2), 1.39 (3H, d, J 5.2, 1Љ-CH3), 3.62 and 3.64
(each 1H, dq, J 9.2 and 7.0, CH3CH2), 3.87 and 3.94 (each 3H,
s, OCH3), 4.03 (1H, dq, J 8.5 and 6.4, 2-H), 4.57 (1H, d, J 8.5,
1-H), 4.73 (1H, q, J 5.2, 1Љ-H), 5.10 (1H, s, 1-OH), 5.18 (2H, s,
C6H5CH2), 6.36 (1H, s, 3Ј-H), 6.62 and 7.29 (each 1H, d, J 2.4,
6Ј- and 8Ј-H), 7.32–7.52 (5H, m, C6H5) and 8.88 (1H, s, 1Ј-OH);
δC (126 MHz) 15.3 (C-3), 17.8 (CH3CH2), 20.8 (C-2Љ), 56.2 and
57.6 (OCH3), 62.2 (CH3CH2), 70.0 (C6H5CH2), 78.3 (C-2), 80.0
(C-1), 93.9 (C-1Љ), 99.7 (C-6Ј),a 100.6 (C-3Ј),a 106.6 (C-8Ј),a
113.9 (C-8Јa),b 116.7 (C-4Јa),b 127.9 (C-2ٞ and C-6ٞ),c 128.0
(C-4ٞ), 128.6 (C-3ٞ and C-5ٞ),c 129.3 (C-2Ј), 136.8 (C-1ٞ),
144.9 (C-1Ј), 149.9 (C-4Ј), 157.2 (C-7Ј)d and 157.9 (C-5Ј);d m/z
456 (Mϩ, 1%), 438 (1), 410 (2), 394 (11), 366 (24), 349 (10), 275
(20), 247 (34), 149 (12), 91 (100) and 65 (11).
2. Of Rf 0.09, one of the diastereomeric products 6, as an
unstable thick, red oil (183 mg, 38%); [α]D Ϫ8.4 (c 0.2, CHCl3);
νmax (film)/cmϪ1 3430 (OH), 1609, 1516, 1499 and 1454 (C᎐C);
᎐
δH (500 MHz) 1.12 (3H, d, J 6.2, 2-CH3), 1.23 (3H, t, J 7.1,
CH3CH2), 1.42 (3H, d, J 5.3, 1Љ-CH3), 3.53 and 3.74 (each 1H,
dq, J 9.2 and 7.1, CH3CH2), 3.86 and 3.94 (each 3H, s, OCH3),
4.01 (1H, dq, J 8.0 and 6.2, 2-H), 4.22 (1H, s, 1-OH), 4.58 (1H,
d, J 8.0, 1-H), 4.83 (1H, q, J 5.3, 1Љ-H), 5.17 (2H, s, C6H5CH2),
6.34 (1H, s, 3Ј-H), 6.62 and 7.28 (each 1H, d, J 2.3, 6Ј- and
8Ј-H), 7.32–7.51 (5H, m, C6H5) and 8.55 (1H, s, 1Ј-OH); δC (126
MHz) 15.2 (C-3), 17.7 (CH3CH2), 20.3 (C-2Љ), 56.2 and 57.5
(OCH3), 61.9 (CH3CH2), 70.0 (C6H5CH2), 75.3 (C-2), 79.8
(C-1), 94.0 (C-1Љ), 99.8 (C-6Ј),a 100.1 (C-3Ј),a 106.3 (C-8Ј),a
113.8 (C-8Јa),b 117.0 (C-4Јa),b 127.9 (C-2ٞ and C-6ٞ),c 128.1
(C-4ٞ), 128.6 (C-3ٞ and C-5ٞ),c 129.4 (C-2Ј), 136.8 (C-1ٞ),
144.7 (C-1Ј), 150.0 (C-4Ј), 157.3 (C-7Ј)d and 157.9 (C-5Ј);d m/z
Paper 9/01456J
3038
J. Chem. Soc., Perkin Trans. 1, 1999, 3029–3038