2818
T. Ishiyama et al. / Bioorg. Med. Chem. Lett. 12 (2002) 2815–2819
Table 3. NMR data of 9-a and 9-b taxoids
the article: Poujol, H.; Mourabit, A. A., Ahond, A., Poupat,
C. and Potier, P. Tetrahedron 1997, 53, 12575.
10. Johnson, R. A.; Nidy, E. G.; Dobrowolski, P. J.; Geb-
hard, I.; Qualls, S. J.; Wicnienski, N. A.; Kelly, R. C. Tetra-
hedron Lett. 1994, 35, 7893.
9-H (ppm)
10-H (ppm)
J (Hz)
9a:
9b
40
13
18
24
27
4.39
4.18
4.49
4.61
4.57
4.72
5.62
5.49
5.59
5.53
9.5
7.3
7.8
8.8
7.8
11. Analytical data of 19 is as follows: mp 152–157 ꢁC; FAB-
MS m/z 833 (M+1)+; 1H NMR (400 MHz, CDCl3) d 0.78
(broad s, 1H), 1.15–1.45 (m, 2H), 1.22 (s, 3H), 1.35 (s, 12H),
1.49 (s, 3H), 1.57 (s, 3H), 1.70–1.80 (m, 1H), 1.70 (s, 3H), 1.85
(s, 1H), 2.26 (s, 3H), 2.29 (dd, J=8.3, 15.6 Hz, 1H), 2.57 (dd,
J=9.0, 15.6 Hz, 1H), 2.65–2.77 (m, 1H), 3.17 (d, J=7.8 Hz,
1H), 3.83 (broad s, 1H), 4.18 (d, J=7.8 Hz, 9-H, 1H), 4.38 (d,
J=8.3 Hz, 1H), 4.48 (d, J=7.5 Hz, 1H), 4.55 (broad t, J=8.8
Hz, 1H), 4.64 (broad, s 1H), 5.31 (broad t, J=9.3 Hz, 1H),
5.44 (d, J=7.5 Hz, 10-H, 1H), 5.54 (d, J=8.3 Hz, 1H), 5.58 (d,
J=9.3 Hz, 1H), 6.24 (broad t, J=8.5 Hz, 1H), 7.33 (d, J=6.1
Hz, 2H), 7.48 (d, J=7.3 Hz, 2H), 7.57 (t, J=7.3 Hz, 1H), 8.07
(d, J=7.3 Hz, 2H), 8.59 (d, J=6.1 Hz, 2H).
Acknowledgements
The authors are greatly indebted to Dr. M. Iwahana,
organizer, M. Minami, M. Mochizuki, and S. Imagawa
for performing the in vitro study. Also we greatly
appreciate Dr. K. Akimoto and co-workers for the
solubility study.
12. Chen, S.-H.; Huang, S.; Farina, V. Tetrahedron Lett.
1994, 35, 41.
13. Analytical data of 25 are as follows: mp 154–158 ꢁC; H
1
NMR (400 MHz, CDCl3) d 1.19 (s, 3H, Me), 1.41 (s, 9H, tert-
Bu), 1.42 (s, 3H, Me), 1.56 (s, 3H, Me), 1.61 (s, 3H, Me), 1.62
(s, 3H, Me), 1.63 (s, 3H, Me), 1.87 (s, 1H, OH), 2.32 (s, 3H,
acetyl), 2.08–2.47 (m, 4H, 6-H, 14-H), 3.46 (d, J=5.4 Hz, 1H,
3-H), 4.28–4.40 (br, 1H), 4.31 (d, J=8.5 Hz, 1H, 20-H), 4.36
(d, J=8.5 Hz, 1H, 20-H), 4.59 (d, J=8.6 Hz, 1H, 9-H), 4.63
(br, 1H, 20-H), 4.87 (ddd, J=3.9, 7.8, 45.9 Hz, 1H, 7-H), 4.93–
4.97 (m, 1H, 5-H), 5.31 (broad d, J=9.6 Hz, 1H, 30-H), 5.52
(d, J=8.6 Hz, 1H, 10-H), 5.69 (broad d, J=9.6 Hz, 1H, NH),
5.92 (d, J=5.4 Hz, 1H, 2-H), 6.12 (broad t, J=8.3 Hz, 1H, 13-
H), 7.35 (d, J=6.2 Hz, 2H, pyridine), 7.48 (t, J=7.6 Hz, 2H,
Bz), 7.62 (t, J=7.6 Hz, 1H, Bz), 8.10 (d, J=7.6 Hz, 2H, Bz),
8.60 (d, J=6.2 Hz, 2H, pyridine).
References and Notes
1. Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.;
Mcphail, A. J. Am. Chem. Soc. 1971, 93, 2325.
2. Gueritte-Voegelein, F.; Guenard, D.; Lavelle, F.; Le Goff,
M.-T.; Mangatal, L.; Potier, P. J. Med. Chem. 1991, 34, 992.
3. Ishiyama, T.; Iimura, S.; Yoshino, T.; Chiba, J.; Uoto, K.;
Terasawa, H.; Soga, T. Bioorg. Med. Chem. Lett. In press.
4. Analogue 4 showed the better water solubility than Taxol
and Taxotere (Table 2).
5. Georg, G. I.; Harriman, G. C. B.; Hepperle, M.; Himes,
R. H. Bioorg. Med. Chem. Lett. 1994, 4, 1381.
14. Iimura, S.; Uoto, K.; Ohsuki, S.; Chiba, J.; Yoshino, T.;
Iwahana, M.; Jimbo, T.; Terasawa, H.; Soga, T. Bioorg. Med.
Chem. Lett. 2001, 11, 407.
6. Analytical data of 4 are as follows: 4: mp 160–163 ꢁC; FAB-
MS m/z 851 (M+1)+; 1H NMR (400 MHz, CDCl3) d 1.29,
1.40, 1.59, 1.63, 1.68, and 1.81 (each s, each 3H, Meꢂ6), 1.40
(s, 9H, tert-Bu), 1.92 (broad s, 1H, OH), 2.05–2.42 (m, 4H),
2.19 (s, 3H, Ac), 2.93 (d, 1H, J=4.9 Hz, H-3), 3.83 (d, J=7.3
Hz, 1H, H-9), 4.03–4.13 (m, 1H, H-7), 4.32 and 4.39 (ABq,
J=8.3 Hz, each 1H, H-20, H-200), 4.51 (broad s, 1H), 4.73 (d,
J=7.3 Hz, 1H), 5.18 (s, 1H), 5.30 (broad d, J=8.4 Hz, 1H),
5.46–5.61 (m, 2H), 6.06 (d, J=4.9 Hz, 1H, H-2), 6.23 (m, 1H,
H-13), 7.42 (d, J=6.8 Hz, 2H, Py), 7.46 (t, J=7.6 Hz, 2H, Bz),
7.60 (t, J=7.6 Hz, 1H, Bz), 8.10 (d, J=7.6 Hz, 2H, Bz), 8.62
(d, J=6.8 Hz, 2H, Py).
15. Analytical data of 28 are as follows: mp 155–158 ꢁC; FAB-
1
MS m/z 865 (M+1)+; H NMR (400 MHz, CDCl3) d 1.22 (s,
3H), 1.40 (s, 3H), 1.41 (s, 9H), 1.51 (s, 3H), 1.57 (s, 3H), 1.59
(s, 6H), 1.80–2.40 (m, 5H), 2.31 (s, 3H), 3.00 (d, J=4.9 Hz,
1H), 3.33 (s, 3H), 3.40 (d, J=4.0 Hz, 1H), 4.08 (d, J=7.8 Hz,
1H), 4.19 (d, J=7.8 Hz, 1H, 9-H), 4.55 (d, J=7.8 Hz, 1H),
4.63 (s, 1H), 4.86 (s, 1H), 5.30 (d, J=9.3 Hz, 1H), 5.47 (d,
J=7.8 Hz, 1H, 10-H), 5.73 (d, J=9.3 Hz, 1H), 5.94 (d, J=4.9
Hz, 1H), 6.13 (t, J=8.3 Hz, 1H), 7.35 (d, J=5.9 Hz, 2H), 7.46
(t, J=7.3 Hz, 2H), 7.58 (t, J=7.3 Hz, 1H), 8.10 (d, J=7.3 Hz,
1H), 8.58 (d, J=5.9 Hz, 2H).
7. Selective 10-acetylation of 10-deacetylbaccatin III was
reported in the following article: Damen, E. W. P.; Braamer,
L.; Scheeren, H. W. Tetrahedron Lett. 1998, 39, 6081.
8. Analytical data of 14 are as follows: mp 163–168 ꢁC; 1H
NMR (400 MHz, CDCl3) d 1.23 (s, 3H, Me), 1.43 (s, 9H, tert-
Bu), 1.51 (s, 3H, Me), 1.55 (s, 3H, Me), 1.57 (s, 3H, Me), 1.61
(s, 3H, Me), 1.71 (s, 3H, Me), 1.60–2.10 (m, 5H, 6-Hꢂ2,
7-Hꢂ2 and 14-H), 1.97 (broad s, 1H, OH), 2.28 (s, 3H, Ac),
2.34 (dd, J=10.2, 15.2 Hz, 1H, 14-H), 2.91 (d, J=4.9 Hz, 1H,
3-H), 4.12 (d, J=7.1 Hz, 1H, 9-H), 4.27 (d, J=8.3 Hz, 1H,
20-H), 4.32 (d, J=8.3 Hz, 1H, 20-H), 4.63 (broad s, 1H, 20-H),
4.82 (broad s, 1H, OH), 4.93 (broad s, 1H, 5-H), 5.30 (d,
J=9.1 Hz, 1H, 30-H), 5.56 (d, J=7.1 Hz, 1H, 10-H), 5.81 (d,
J=9.3 Hz, 1H, NH), 6.00 (d, J=4.9 Hz, 1H, 2-H), 6.09 (broad
t, J=7.8 Hz, 1H, 13-H), 7.36 (d, J=5.9 Hz, 2H, Py), 7.47 (t,
J=7.3 Hz, 2H, Bz), 7.60 (t, J=7.3 Hz, 1H, Bz), 8.12 (d, J=7.3
Hz, 2H, Bz), 8.59 (d, J=5.9 Hz, 2H, Py).
16. Analytical data of 29 and 30 are as follows. 29: mp 145–
148 ꢁC; FAB-MS m/z 835 (M+1)+; 1H NMR (400 MHz,
CDCl3) d 1.26 (s, 3H), 1.43 (s, 3H), 1.44 (s, 9H), 1.52 (s, 3H),
1.56 (s, 3H), 1.61 (s, 3H), 1.71 (s, 3H), 1.80–2.20 (m, 4H),
2.22–2.31 (m, 2H), 2.35 (s, 3H), 2.94 (d, J=4.9 Hz, 1H), 4.17
(d, J=7.3 Hz, 1H), 4.23 (d, J=8.3 Hz, 1H), 4.32 (d, J=8.3
Hz, 1H), 4.88 (d, J=2.5 Hz, 1H), 4.92 (s, 1H), 5.34 (d, J=9.3
Hz, 1H), 5.56 (d, J=7.3 Hz, 1H), 5.94 (d, J=9.4 Hz, 1H), 5.96
(d, J=4.9 Hz, 1H), 6.09 (t, J=8.3 Hz, 1H), 7.22 (dd, J=7.3
Hz, 4.9 Hz, 1H), 7.38–7.50 (m, 3H), 7.59 (t, J=7.8 Hz, 1H),
7.72 (t, J=7.3 Hz, 1H), 8.12 (d, J=7.8 Hz, 1H), 8.54 (d,
J=4.4 Hz, 1H). 30: mp 145–148 C; FAB-MS m/z 834
(M+1)+; 1H NMR (400 MHz, CDCl3) d 1.28 (s, 3H), 1.29 (s,
3H), 1.42 (s, 9H), 1.45 (s, 3H), 1.50 (s, 3H), 1.60 (s, 3H), 1.66 (s,
3H), 1.80–2.10 (m, 4H), 2.30 (s, 3H, Ac), 2.48 (dd, J=10.0 Hz,
15.0 Hz, 1H), 2.91 (d, J=4.8 Hz, 1H), 4.14 (d, J=7.3 Hz, 1H, 9-
H), 4.25 (d, J=8.3 Hz, 1H), 4.30 (d, J=8.3 Hz, 1H), 4.39 (brs,
1H), 4.61 (brs, 1H), 4.91 (s, 1H), 5.30 (d, J=9.0 Hz, 1H), 5.56 (d,
J=7.3 Hz, 1H, 10-H), 5.70 (d, J=9.0 Hz, 1H), 6.00 (d, J=4.9
Hz, 1H), 6.07 (m, 1H), 7.27–7.37 (m, 5H), 7.40–7.46 (m, 2H), 7.57
(t, J=7.4 Hz, 1H), 8.11 (d, J=7.5 Hz, 2H).
9. Proton NMR data of 9a-10b-taxoids (40) and 9b-10b-tax-
oids (13, 18, 24, 27, Fig. 3) were compared as follows (Table
3), and these data seemed to support the 9-b configuration.
Proton NMR data of the 9a-10b-taxoid were obtained from