Stu d ies on th e Regio- a n d Ster eoselectivity of Ha loh yd r oxyla tion
of 1,2-Allen yl Su lfid es or Selen id es
Shengming Ma,*,†,‡ Xueshi Hao,† Xiaofeng Meng,† and Xian Huang†
Laboratory of Molecular Recognition and Synthesis, Department of Chemistry, Zhejiang University,
Hangzhou 310027, P. R. China, and State Key Laboratory of Organometallic Chemistry,
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu,
Shanghai 200032, P. R. China
masm@mail.sioc.ac.cn
Received March 12, 2004
It was observed that the halohydroxylation of 1,2-allenyl sulfides or selenides with Br2 (CuBr2 or
NBS) or I2 and water demonstrated a fairly good regioselectivity (i.e., the CdC bond that is remote
from the S or Se atom was halohydroxylated with the halogen atom connecting to the middle carbon
atom and the hydroxyl group connecting to the non-S terminal carbon or Se-substituted terminal
carbon atom of the allene moiety), leading to the synthesis of synthetically important 3-organosulfur
or seleno-2-haloallylic alcohols. The stereoselectivity depends on the nature of X+ and S or Se,
showing a Z-selectivity with the matched Lewis acid-base pair.
In tr od u ction
the regio- and stereoselectivity.6 Recently, we observed
the following: (1) The electron-withdrawing group of the
electron-deficient allenes determines the regioselectivity
of the corresponding hydrohalogenation reaction, leading
to â,γ unsaturated functionalized alkenes.7 (2) The ex-
cellent regioselectivity and E-stereoselectivity of the
iodohydroxylation reaction of 1,2-allenyl sulfoxides was
determined by the participation of the sulfinyl group,
because of the formation of a five-membered cyclic
intermediate.8
Allenes show unique reactivity in organic synthesis due
to the presence of the cumulated CdC double bonds.1
Recently, much attention has been paid to the study on
their reactivity, especially the control of the related
selectivity.2,3 An addition reaction of a carbon-carbon
multiple bond is synthetically attractive because two
functional groups are introduced within one operation.4
However, reports on the addition reactions of allenes5 are
limited, probably because of the problem of controlling
In a preliminary communication, we have demon-
strated that the iodohydroxylation reaction of 1,2-allenyl
sulfides is high-yielding with excellent Z-selectivity,
which is opposite to what was observed with 1,2-allenyl
sulfoxides.9 In this paper, we wish to report the scope,
regioselectivity, and stereoselectivity of the halohydroxy-
lation of 1,2-allenyl sulfides or selenides. The combination
of a different X+ with S or Se showed that the Z-
selectivity may be controlled by the nature of Lewis
basicity of the S or Se atom and the Lewis acidity of X+.
* Corresponding author. Fax: (+86) 21-64167510.
† Zhejiang University.
‡ Shanghai Institute of Organic Chemistry.
(1) (a) The Chemistry of Allenes; Landor, S. R., Ed.; Academic
Press: New York, 1982; Vols. 1-3. (b) The Chemistry of Ketenes,
Allenes and Related Compounds; Patai, S., Ed.; Wiley: New York, 1980;
Vols. 1 and 2. (c) Brandsma, L.; Verkruijsee, H. D. Synthesis of
Acetylenes, Allenes and Cumulenes; Elsevier: New York, 1980. (d)
Bruneau, C.; Dixneuf, P. H. Compr. Org. Funct. Group Transform.
1995, 1, 953. (e) Marshall, J . A. Chem. Rev. 1996, 96, 31. (f) Schuster,
H. F.; Coppola, G. M. Allenes in Organic Synthesis; Wiley: New York,
1984. (g) Taylor, D. R. Chem. Rev. 1967, 67, 317. (h) Aso, M.;
Kanematsu, K. Trends Org. Chem. 1995, 5, 157. (i) Zimmer, R.
Synthesis 1993, 165.
(2) For recent reviews, see: (a) Zimmer, R.; Dinesh, C. U.; Nan-
danan, E.; Khan, F. A. Chem. Rev. 2000, 100, 3067. (b) Hashmi, A. S.
K. Angew. Chem., Int. Ed. 2000, 39, 3590. (c) Lu, X.; Zhang, C.; Xu, Z.
Acc. Chem. Res. 2001, 34, 535.
(3) For some of our recent work, see: (a) Ma, S.; Zhao, S. J . Am.
Chem. Soc. 2001, 123, 5578. (b) Ma, S.; Wu, S. Chem. Commun. 2001,
441. (c) Ma, S.; Wu, S. Tetrahedron Lett. 2001, 42, 4075. (d) Ma, S.;
Shi, Z.; Wu, S. Tetrahedron: Asymmetry 2001, 12, 193. (e) Ma, S.; Shi,
Z. Chem. Commun. 2002, 540. (f) Ma, S.; J iao, N.; Zhao, S.; Hou, H. J .
Org. Chem. 2002, 67, 2837. (g) Ma, S.; Duan, D.; Wang, Y. J . Comb.
Chem. 2002, 4, 239. (h) Ma, S.; Yu, Z. Angew. Chem., Int. Ed. 2002,
41, 1775.
(5) (a) Weiss, H. M.; Touchette, K. M. J . Chem. Soc., Perkin Trans.
2 1998, 6, 1523. (b) Breuer, K.; Teles, J . H.; Demuth, D.; Hibst, H.;
Schafer, A.; Brode, S.; Domgorgen, H. Angew. Chem., Int. Ed. 1999,
39, 1401. (c) Barbero, A.; Garcia, C.; Pulido, F. J . Tetrahedron Lett.
1999, 36, 6649. (d) Yang, F.; Wu, M.; Cheng, C. J . Am. Chem. Soc.
2000, 122, 7122. (e) Grigg, R.; MacLachlan, W.; Rasparini, M. Chem.
Commun. 2000, 2241. (f) Suginome, M.; Ohmori, Y.; Ito, Y. J .
Organomet. Chem. 2000, 611, 403.
(6) For intramolecular haloalkoxylation of 2-phenythio-2,3-allenols
leading to 2,5-dihydrofurans, see: (a) Yano, Y.; Ohshima, M.; Sutoh,
S. J . Chem. Soc., Chem. Commun. 1984, 695. (b) Florio, S.; Ronzini,
L.; Epifani, E.; Sgarra, R. Tetrahedron 1993, 49, 10413.
(7) (a) Ma, S.; Shi, Z.; Li, L. J . Org. Chem. 1998, 63, 4522. (b) Ma,
S.; Wei, Q. J . Org. Chem. 1999, 64, 1026. (c) Ma, S.; Li, L.; Xie, H. J .
Org. Chem. 1999, 64, 5325. (d) Ma, S.; Wei, Q. Eur. J . Org. Chem.
2000, 1939. (e) Ma, S.; Li, L. Synlett 2001, 1206. (f) Ma, S.; Li, L.;
Wei, Q.; Xie, H.; Wang, G.; Shi, Z.; Zhang, J . Pure Appl. Chem. 2000,
72, 1739. (g) Ma, S.; Xie, H.; Wang, G.; Zhang, J .; Shi, Z. Synthesis
2001, 713. (h) Ma, S.; Yin, S.; Li, L.; Tao, F. Org. Lett. 2002, 4, 505.
(8) (a) Ma, S.; Wei, Q.; Wang, H. Org. Lett. 2000, 2, 3893. (b) Ma,
S.; Ren, H.; Wei, Q. J . Am. Chem. Soc. 2003, 125, 4817.
(4) (a) Nakhmanovich, A. S.; Komarova, T. N.; Lopyrev, V. A. Russ.
J . Org. Chem. 2000, 11, 1551. (b) Chemistry of Dienes & Polyenes;
Rappoport, Z., Ed.; J ohn Wiley & Sons Ltd.: New York, 2000; Vol. 2,
pp 545-663. (c) Beletskaya, I.; Moberg, C. Chem. Rev. 1999, 99, 3435.
(d) Organoselenium Chemistry; Back, T. G., Ed.; Oxford University
Press: New York, 1999; pp 35-66. (e) Mascavage, L. M.; Dalton, D.
R. Trends Org. Chem. 1993, 1, 303. (f) Chemistry of Double-Bonded
Functional Groups; Patai, S., Ed.; Wiley: New York, 1997; Vol. 3, pp
1135-1222. (g) Han, L.; Tanaka, M. Chem. Commun. 1999, 5, 395.
(9) Ma, S.; Hao, X.; Huang, X. Org. Lett. 2003, 5, 1217.
10.1021/jo049593c CCC: $27.50 © 2004 American Chemical Society
Published on Web 07/29/2004
5720
J . Org. Chem. 2004, 69, 5720-5724