J. Am. Chem. Soc. 1997, 119, 2757-2758
2757
Scheme 1a
The Pinene Path to Taxanes. 6. A Concise
Stereocontrolled Synthesis of Taxol
Paul A. Wender,* Neil F. Badham, Simon P. Conway,
Paul E. Floreancig, Timothy E. Glass, Jonathan B. Houze,
Nancy E. Krauss, Daesung Lee, Daniel G. Marquess,
Paul L. McGrane, Wei Meng, Michael G. Natchus,
Anthony J. Shuker, James C. Sutton, and Richard E. Taylor
Department of Chemistry, Stanford UniVersity
Stanford, California 94305
ReceiVed October 9, 1996
In the preceding communication,1 we described the synthesis
of a potentially general precursor (2, Scheme 1) of the highly
promising chemotherapeutic agent Taxol2 (1, Scheme 2) and
its analogues. Our strategy for the elaboration of this AB-
bicyclic precursor into the ABC-tricyclic core of the taxanes
was predicated on the view1b that epimerization of the C7 center
of Taxol3 proceeds through the intermediacy of the AB-bicyclic
enolaldehyde or its ketone isomer, leading to the intriguing
possibility that the C-ring of Taxol could self-assemble under
exceptionally mild conditions from a considerably less complex
AB-bicyclic ketoaldehyde precursor (e.g., 9). In this com-
munication, the viability of this aldol cyclization strategy is
demonstrated in a synthesis of Taxol (1), representing the
shortest sequence yet reported for the preparation of this
important natural product.4,5
The elaboration of our general taxane precursor (2, Scheme
1) into Taxol started with its homologation with Ph3PC(H)-
OMe (91%)6 followed by a one-step hydrolysis of the enol ether
and acetonide groups (HCl, NaI) to provide aldehyde 3 (94%).7
Selective protection of the C9 hydroxyl was then accomplished
in 92% yield with TESCl and pyridine. Dess-Martin perio-
dinane oxidation8 of the C10 alcohol and introduction of C20
with [Me2NCH2]I (g0.1 M)9 and Et3N (excess) was conducted
in one operation to produce enal 4 in 97% yield. The remaining
carbons of the taxane skeleton were then introduced through
a (a) Ph3PCHOMe, THF, -78 °C, 91%. (b) 1 N HCl(aq), NaI, dioxane,
94% at 90% conversion. (c) TESCl, pyr, CH2Cl2, -30 °C, 92%. (d)
Dess-Martin periodinane, CH2Cl2; Et3N, Eschenmoser’s salt, 97%. (e)
allyl-MgBr, ZnCl2, THF, -78 °C, 89%. (f) BOMCl, (i-Pr)2NEt, 55
°C. (g) NH4F, MeOH, rt, 93% over two steps. (h) PhLi, THF, -78 °C;
Ac2O, DMAP, pyr, 79%. (i) 7, CH2Cl2, rt, 1 h, 80% at 63% conversion.
(j) O3, CH2Cl2, -78 °C; P(OEt)3, 86%.
the addition of 4 to a solution of allylmagnesium bromide and
ZnCl2 (89%)10 which after BOM (benzyloxymethyl) protection
(N,N-diisopropylethylamine solvent) provided the ether 5 as a
single diastereomer.10c The presence of ZnCl2 in the former
reaction completely suppressed addition of the Grignard reagent
to the cyclic carbonate.
(1) (a) Wender, P. A.; et al. J. Am. Chem. Soc. 1997, 119, 2755
(preceding paper). (b) For an overview of the pinene pathway, see ref 9 in
the preceding paper.
(2) Taxol is the registered trademark for the molecule with the generic
name paclitaxel. For reviews on Taxol, see refs 1a,b in the preceding paper.
(3) (a) Kingston, D. G. I.; Samaranayake, G.; Ivey, C. A. J. Nat. Prod.
1990, 53, 1-12. (b) Miller, R. W.; Powell, R. G.; Smith, C. R., Jr.; Arnold,
E.; Clardy, J. J. Org. Chem. 1981, 46, 1469-1474.
(4) For recent reviews of synthetic studies from over 35 groups, see ref
7 in the preceding paper.
Removal of the C9 silyl group (NH4F, MeOH)11 provided
an unstable hydroxyketone (93% over two steps) which was
reacted immediately with PhLi12 to form the C2 benzoate
providing, after in situ acetylation, the acetate 6 in 79% yield.
Transposition of the acetoxyketone under kinetic5a or equilibrat-
ing conditions (Et2NH, KOAc, DMF)13 resulted in limited
success. However, when the guanidinium base 714 was em-
ployed for this transposition, the desired acetoxyketone 8 and
recyclable 6 were obtained in 80% as a 4:3 equilibrium mixture.
The monosubstituted alkene in 8 was then cleaved through
addition of an ozone solution to form aldehyde 9 in 86% yield.
The viability of the key aldol cyclization was addressed at
this point. Previous studies in our laboratory1b,15 showed that
ketoaldehydes similar to 9 but incorporating a C1-C2 cyclic
carbonate did not undergo aldol cyclization, preferring instead
(5) For total syntheses of Taxol, see: (a) Holton, R. A.; Somoza, C.;
Kim, H. B.; Liang, F.; Biediger, R. J.; Boatman, P. D.; Shindo, M.; Smith,
C. C.; Kim, S.; Suzuki, Y.; Tao, C.; Vu, P.; Tang, S.; Zhang, P.; Murthi,
K. K.; Gentile, L. N.; Liu, J. H. J. Am. Chem. Soc. 1994, 116, 1597-1598.
Holton, R. A.; Kim, H. B.; Somoza, C.; Liang, F.; Biediger, R. J.; Boatman,
P. D.; Shindo, M.; Smith, C. C.; Kim, S; Nadizadeh, H.; Suzuki, Y.; Tao,
C.; Vu, P.; Tang, S.; Zhang, P.; Murthi, K. K.; Gentile, L. N.; Liu, J. H. J.
Am. Chem. Soc. 1994, 116, 1599-1600. (b) Nicolaou, K. C.; Nantermet,
P. G.; Ueno, H.; Guy, R. K.; Couladouros, E. A.; Sorensen, E. J. J. Am.
Chem. Soc. 1995, 117, 624-633. Nicolaou, K. C.; Liu, J.-J.; Yang, Z.;
Ueno, H.; Sorensen, E. J.; Claiborne, C. F.; Guy, R. K.; Hwang, C.-K.;
Nakada, M.; Nantermet, P. G. J. Am. Chem. Soc. 1995, 117, 634-644.
Nicolaou, K. C.; Yang, Z.; Liu, J.-J.; Nantermet, P. G.; Claiborne, C. F.;
Renaud, J.; Guy, R. K.; Shibayama, K. J. Am. Chem. Soc. 1995, 117, 645-
652. Nicolaou, K. C.; Ueno, H.; Liu, J.-J.; Nantermet, P. G.; Yang, Z.;
Renaud, J.; Paulvannan, K.; Chadha, R. J. Am. Chem. Soc. 1995, 117, 653-
659 and references cited therein. (c) Danishefsky, S. J.; Masters, J. J.; Young,
W. B.; Link, J. T.; Snyder, L. B.; Magee, T. V.; Jung, D. K.; Isaacs, R. C.
A.; Bornmann, W. G.; Alaimo, C. A.; Coburn, C. A.; Di Grandi, M. J. J.
Am. Chem. Soc. 1996, 118, 2843-2859.
(6) Levine, S. G. J. Am. Chem. Soc. 1958, 80, 6150-6151.
(7) Williams, D. R.; Barner, B. A.; Nishitani, K.; Phillips, J. G. J. Am.
Chem. Soc. 1982, 104, 4708-4710.
(8) (a) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277-
7287. (b) Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899.
(9) Takano, S.; Inomata, K.; Samizu, K.; Tomita, S.; Yanase, M.; Suzuki,
M.; Iwabuchi, Y.; Sugihara, T.; Ogasawara, K. Chem. Lett. 1989, 1283-
1284.
(10) (a) Nagaoka, H.; Kishi, Y. Tetrahedron 1981, 37, 3873-3888. (b)
Thiele, K.-H.; Zdunneck, P. J. Organomet. Chem. 1965, 4, 10-17. (c) The
stereochemistry at C5 was determined by NOE studies on the des-acetyl
derivative of the aldol product 10a.
(11) Zhang, W.; Robins, M. J. Tetrahedron Lett. 1992, 33, 1177-1180.
(12) Wender, P. A.; Kogen, H.; Lee, H. Y.; Munger, J. D.; Wilhelm, R.
S.; Williams, P. D. J. Am. Chem. Soc. 1989, 111, 8957-8958 and ref 5
cited above.
(13) To´th, I.; Szabo´, L.; Kajta´r-Peredi, M.; Baitz-Ga´cs, E.; Radics, L.;
Sza´ntay, C. Tetrahedron 1978, 34, 2113-2122.
(14) Johansen, J. E.; Piermattie, V.; Angst, C.; Diener, E.; Kratky, C.;
Eschenmoser, A. Angew. Chem., Int. Ed. Engl. 1981, 20, 261-263.
S0002-7863(96)03539-1 CCC: $14.00 © 1997 American Chemical Society