3556 J ournal of Medicinal Chemistry, 1997, Vol. 40, No. 22
Furet et al.
(22) Waksman, G.; Kominos, D.; Robertson, S. C.; Pant, N.; Balti-
more, D.; Birge, R. B.; Cowburn, D.; Hanafusa, H.; Mayer, B.
J .; Overduin, M.; Resh, M. D.; Rios, C. B.; Silverman, L.;
Kuriyan, J . Crystal Structure of the Phosphotyrosine Recogni-
tion Domain SH2 of v-src Complexed with Tyrosine-Phos-
phorylated Peptides. Nature 1992, 358, 646-653.
(23) Hatada, M. H.; Lu, X.; Laird, E. R.; Green, J .; Morgenstern, J .
P.; Lou, M.; Marr, C. S.; Phillips, T. B.; Ram, M. K.; Theriault,
K.; Zoller, M. j.; Karas, J . L. Molecular Basis for the Interaction
of the Protein Tyrosine Kinase ZAP-70 with the T-cell Receptor.
Nature 1995, 377, 32-38.
(24) Flocco, M. M.; Mowbray, S. L. Planar Stacking Interactions of
Arginine and Aromatic Side-Chains in Proteins. J . Mol. Biol.
1994, 235, 709-717.
(25) Mitchell, J . B. O.; Nandi, C. L.; McDonald, I. K.; Thornton, J .
M.; Price, S. L. Amino/Aromatic Interactions in Proteins: Is the
Evidence Stacked Against Hydrogen Bonding? J . Mol. Biol.
1994, 239, 315-331.
Refer en ces
(1) Gibbs, J . B.; Oliff, A. Pharmaceutical Research in Molecular
Oncology. Cell 1994, 79, 193-198.
(2) Saltiel, A. R; Sawyer, T. K. Targeting Signal Transduction in
the Discovery of Antiproliferative Drugs. Chem. Biol. 1996, 3,
887-893.
(3) Levitzki, A. Signal Transduction Therapy. A Novel Approach to
Disease Management. Eur. J . Biochem. 1994, 226, 1-13.
(4) Groundwater, P. W.; Solomons, K. R. H.; Drewe, J . A.; Munawar,
M. A. Protein Tyrosine Kinase Inhibitors. In Progress in
Medicinal Chemistry; Ellis, G. P., Luscombe, D. K., Eds.; Elsevier
Science B. V.: Amsterdam, 1996; Vol. 33, pp 233-329.
(5) Traxler, P.; Lydon, N. Recent Advances in Protein Tyrosine
Kinase Inhibitors. Drugs Future 1995, 20, 1261-1274.
(6) Gishizky, M. L. Tyrosine Kinase Induced Mitogenesis Breaking
the Link with Cancer. In Annual Reports in Medicinal Chem-
istry; Bristol, J . A., Ed.; Academic Press: San Diego, 1995; Vol.
30, pp 247-253.
(7) Smithgall, T. E. SH2 and SH3 Domains: Potential Targets for
Anti-Cancer Drug Design. J . Pharmacol. Toxicol. Methods 1995,
34, 125-132.
(8) Lowenstein, E. J .; Daly, R. J .; Batzer, W. L.; Margolis, B.;
Lammers, R.; Ullrich, A.; Skolnik, E. Y.; Bar-Sagi, D.; Schlessing-
er, J . The SH2 and SH3 Domain-Containing Protein Grb2 Links
Receptor Tyrosine Kinases to ras Signaling. Cell 1992, 70, 431-
442.
(9) Rojas, M.; Yao, S. Y.; Lin, Y. Z. Controlling Epidermal Growth
Factor (EGF)-stimulated Ras Activation in Intacts Cells by a
Cell-permeable Peptide Mimicking Phosphorylated EGF Recep-
tor. J . Biol. Chem. 1996, 271, 27456-27461.
(10) Peptide studies have established that the minimal sequence
retaining micromolar affinity for the Grb2-SH2 domain is the
tripeptide pTyr-Ile-Asn. Asparagine at position pTyr+2 is
absolutely required while the pTyr+1 position is more versatile,
valine, glutamine and glutamic acid being good substitutes for
isoleucine (Garcia-Echeverria, C.; et al. Novartis Pharma Inc.,
Oncology Research Department, unpublished results).
(11) Rahuel, J .; Gay, B.; Erdmann, D., Strauss, A.; Garcia-Echeverria,
C.; Furet, P.; Caravatti, G.; Fretz, H.; Schoepfer, J .; Gruetter,
M. Structural Basis for Specificity of Grb2-SH2 Revealed by a
Novel Ligand Binding Mode Nature Struct. Biol. 1996, 3, 586-
589.
(26) Gowravaram, M. R.; Tomczuk, B. E.; J ohnson, J . S.; Delecki,
D.; Cook, E. R.; Ghose, A. K.; Mathiowetz, A. M.; Spurlino, J .
C.; Rubin, B.; Smith, D. L.; Pulvino, T.; Wahl, R. C. Inhibition
of Matrix Metalloproteinase by Hydroxamates Containing Het-
′ Group. J . Med.Chem.
eroatom-Based Modifications of the P1
1995, 38, 2570-2581.
(27) Ottinger, E. A.; Shekels, L. L.; Bernlohr, D. A.; Barany, G.
Synthesis of Phosphotyrosine-Containing Peptides as Their Use
as Substrates for Protein Tyrosine Phosphatases. Biochemistry
1993, 32, 4354-4361.
(28) Rink, H. Solid-Phase Synthesis of Protected Peptide Fragments
Using a Trialkoxy-diphenyl-methylester resin. Tetrahedron Lett.
1987, 28, 3787-3790.
(29) For a study on the coupling of NR-Fmoc-Tyr(PO3H2)-OH, see:
Garc´ıa-Echeverr´ıa, C. Lett. Pept. Sci. 1995, 2, 369-373.
(30) (a) Castro, B.; Dormoy, J . R.; Evin, G.; Selve, C. Reactifs de
couplage peptidique IV (1) - L′ hexafluorophosphate de benzo-
triazolyl N-oxytrisdimethylamino phosphonium (B.O.P.). Tetra-
hedron Lett. 1975, 14, 1219-1922. (b) Ko¨nig, W.; Geiger, R. Eine
neue methode zur synthese von peptiden: aktivierung der
caboxylgruppe mit dicyclohexylcarbodiimid unter zusatz von
1-hydoxy-benzotriazolen. Chem. Ber. 1970, 103, 788-798.
(31) Carpino, L. A. 1-Hydroxy-7-azabenzotriazole. An Efficient Pep-
tide Coupling Additive. J . Am. Chem. Soc. 1993, 115, 4397-
4398.
(12) Eck, M. J .; Shoelson, S. E.; Harrison, S. C. Structure of the
Regulatory Domains of the Src-Family Tyrosine Kinase Lck.
Nature 1993, 362, 87-91.
(32) Albericio, F.; Kneib-Cordonier, N.; Biancalana, S.; Gera, L.;
Masada, R. I.; Hudson, D.; Barany, G. Preparation and Applica-
tion of the 5-(4-(9-fluorenylmethyloxycarbonyl)aminopmethyl-
3,5-dimethoxyphenoxy)-valeric Acid (PAL) Handle for the Solid-
Phase Synthesis of C-Terminal Peptide Amides under Mild
Conditions. J . Org. Chem. 1990, 55, 3730-3743.
(33) Knorr, R.; Trzeciak, A.; Bannwarth, W.; Gillessen, D. New
Coupling Reagents in Peptide Chemistry. Tetrahedron Lett.
1989, 30, 1927-1930
(34) Mohamadi, F.; Richards, N. G.; Guida, W. C.; Liskamp, R.;
Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W.
C. Macromodel- An Integrated Software System for Modeling
Organic and Bioorganic Molecules Using Molecular Mechanics.
J . Comput. Chem. 1990, 11, 440-467.
(35) Weiner, S. J .; Kollman, P.; Case, D. A.; Singh, U. C.; Ghio, C.;
Alagona, S.; Profeta, S.; Weiner, P. A Force Field for the
Simulation of Nucleic Acids and Proteins. J . Am. Chem. Soc.
1984, 106, 765-770.
(36) Chang, G.; Guida, W. C.; Still, W. C. An Internal Coordinate
Monte Carlo Method for Searching Conformational Space. J . Am.
Chem. Soc. 1989, 111, 4379-4386.
(37) “In-house” addition to MacroModel: (a) Bohacek, R. S.; Guida,
W. C. A Rapid Method for the Computation, Comparison and
display of Molecular Volumes. J . Mol. Graph. 1989, 7, 113-117.
(b) Eyraud, V.; Dietrich, A. Novartis Pharma Inc. Unpublished
results.
(38) Dewar, M. J . S.; Thiel, W. Ground States of Molecules. 38. The
MNDO Method. Approximation and Parameters. J . Am. Chem.
Soc. 1977, 99, 4899-4907.
(39) Stewart, J . J . P. MOPAC. A Semiempirical Molecular Orbital
Program. J . Comput.-Aided. Mol. Des. 1990, 1, 1-105.
(40) Allen, F. H.; Bellard, S.; Brice, M. D.; Cartwright, B. A.;
Doubleday, A.; Higgs, H.; Hummelink, T.; Hummelink-Peters,
B. G.; Kennar, O.; Motherwell, W. D. S.; Rodgers, J . R.; Watson,
D. G. The Cambridge Crystallographic Database. Acta Crystal-
logr. 1979, B39, 2331-2339.
(13) Birge, R. B.; Hanafusa, H. Closing in on SH2 Specificity. Science
1993, 262, 1522-1524.
(14) Ligand residues are numbered relative to the position of the
phosphotyrosine which is denoted pTyr 0.
(15) Songyang, Z.; Shoelson, S. E.; McGlade, J .; Olivier, P.; Pawson,
T.; Bustelo, X. R.; Barbacid, M.; Sabe, H.; Hanafusa, H.; Yi, T.;
Ren, R.; Baltimore, D.; Ratnofsky, S.; Feldman, R. A.; Cantley,
L. C. Specific Motifs Recognized by the SH2 Domains of Csk,
3BP2, fps/fes, GRB-2, HCP, SHC, Syk and Vav. Mol. Cell.Biol.
1994, 14, 2777-2785.
(16) Songyang, Z.; Shoelson, S. E.; Chaudhuri, M.; Gish, G.; Pawson,
T.; Hase, W.G.; King, F.; Roberts, T.; Ratnofsky, S.; Lechleider,
R. J .; Neel, B. G; Birge, R.B.; Fajardo, J . E.; Chou, M. M;
Hanafusa, H.; Schaffhausen, B.; Cantley, L. C. SH2 Domains
Recognize Specific Phosphopeptide Sequences. Cell 1993, 72,
767-778.
(17) Pascal, S. M.; Singer, A. U.; Gish, G; Yamazaki, T.; Shoelson, S.
E.; Pawson, T.; Kay, L. E.; Forman-Kay, J . D. Nuclear Magnetic
Resonance Structure of an SH2 Domain Of Phospholipase C-g1
Complexed with a High Affinity Binding Peptide. Cell 1994, 77,
461-472.
(18) Lee, C. H.; Kominos, D.; J acques, S.; Margolis, B.; Schlessinger,
J .; Shoelson, S. E.; Kuriyan, J . Crystal Structures of Peptide
Complexes of the Amino-Terminal SH2 Domain of the Syp
Tyrosine Phosphatase. Structure 1994, 2, 423-438.
(19) Narula, S. S.; Yuan, R. W.; Adams, S. E.; Green, O. M.; Green,
J .; Philips, T. B.; Zydowsky, L. D.; Botfield, M. C.; Hatada, M.;
Laird, E. R.; Zoller, M. J .; Karas, J . L.; Dalgarno, D. C. Solution
Structure of the C-terminal SH2 Domain of the Human Tyrosine
Kinase Syk Complexed with a Phosphotyrosine Pentapeptide.
Structure 1995, 3, 1061-1073.
(20) Breeze, A. L.; Kara, B. V.; Barratt, D. G.; Anderson, M.; Smith,
J . C.; Luke, R.W.; Best, J . R.; Cartlidge, S. A. Structure of a
Specific Peptide Complex of the Carboxy-Terminal SH2 Domain
from the p85a Subunit of Phosphatidylinositol 3-Kinase. EMBO
J . 1996, 15, 3579-3589.
(21) For the nomenclature of the SH2 domain residues, see ref 12 or
18.
J M9702185