3426
J . Org. Chem. 1997, 62, 3426-3427
Ta ble 1. Syn th esis a n d Cycliza tion of (E)-Vin ylsila n es
Ster eoselective Syn th esis of Dih yd r op yr a n s
via Vin ylsila n e-Ter m in a ted Cycliza tion s of
Ester -Su bstitu ted Oxyca r ben iu m Ion
In ter m ed ia tes
Cindy Semeyn, Richard H. Blaauw,
Henk Hiemstra,* and W. Nico Speckamp*
Amsterdam Institute of Molecular Studies, Laboratory of
Organic Chemistry, University of Amsterdam, Nieuwe
Achtergracht 129, 1018 WS Amsterdam, The Netherlands
alcohol acetal
product
(yield, %;
cis/trans ratio)
(yield,
(yield,
Lewis
acid
entry
R
%)a
%)b
Received February 28, 1997
1
2
3
4
5
H
3 (53)c
4 (37)
c-C6H11 5 (60)
8 (51) BF3‚OEt2 13 (62)
Six-membered ring saturated oxygen heterocycles are
an integral part of many biologically active compounds.1
Notable examples, apart from the regular carbohydrates,
are the 2-carboxytetrahydropyrans KDO2 and DAHP3
and the neuraminic acids.4 The 2,6-disubstituted dihy-
dropyrans 1 and 2 (eq 1) are potential starting materials
toward this compound class, as both the double bond and
the ester group enable multiple structural variations.
Me
9 (47) BF3‚OEt2 14 (73; 30:70)
10 (65) BF3‚OEt2 15 (94; 11:89)
t-Bu
6 (60)
7 (60)
11 (76) SnCl4
12 (57) BF3‚OEt2 17 (66; 72:28) +
16 (87; 17:83)
Bn
18 (13)d
a
b
Overall yield from the aldehyde. Ca. 1:1 mixture of diaster-
eomers, except for 8. c From paraformaldehyde. For compound
d
18 see eq 2.
Ta ble 2. Syn th esis a n d Cycliza tion of (Z)-Vin ylsila n es
Cyclic oxycarbenium ions with a carboxyl substituent
on the cationic carbon atom have been implicated as
important intermediates in biological processes.5 We
have shown that acyclic ester-substituted oxycarbenium
ions are useful, highly electrophilic intermediates in
organic synthesis.6 We now wish to report our results
on cyclizations via such intermediates that are termi-
nated by vinylsilane nucleophiles and lead to the dihy-
dropyran building blocks 1 and 2. We have discovered a
remarkable influence of the double bond geometry of the
vinylsilane A on the stereochemistry of the product, viz.
(E)-A gives trans product 1, whereas (Z)-A leads to cis
product 2 (see eq 1). Although vinylsilane-terminated
cyclizations via oxycarbenium7 and iminium8 ions have
been widely studied, the above stereoselectivity is un-
precedented.
alcohol acetal
product
(yield, %;
cis/trans ratio)
(yield,
(yield,
Lewis
acid
entry
R
%)a
%)b
1
2
3
Et
19 (41) 23 (71) BF3‚OEt2 27 (69; 93:7)
20 (50) 24 (36) BF3‚OEt2 15 (86; 92:8)
21 (36) 25 (79) BF3‚OEt2 17 (76; 95:5) +
18 (21)c
c-C6H11
Bn
4
CH2OBn 22 (90)d 26 (62) SnCl4
28 (64; >98:2)e
a
b
Overall yield from the epoxide. Ca. 1:1 mixture of diastere-
d
omers. c For compound 18 see eq 2. 92% ee determined by HPLC
for the benzyl ether of (S)-glycidol precursor of 22. e 92% ee,
By using the methodology delineated in Tables 1 and
2, a variety of homoallylic alcohols containing the vinyl-
silane moiety were constructed from easily available
determined by HPLC, [R]25 ) -68.4 (c ) 1.0, toluene).
D
starting materials. The (E)-vinylsilanes 3-7 were pre-
pared by reaction of lithiated allyltrimethylsilane9 with
the corresponding aldehydes (Table 1). Reaction of
lithiated (trimethylsilyl)acetylene with substituted ox-
iranes10 followed by selective cis reduction with P2-Ni11
afforded the (Z)-vinylsilanes 19-21 in reasonable overall
yields (Table 2). Optically active alcohol 22 (entry 4,
Table 2) was prepared in a similar manner from com-
mercially available (S)-glycidol.
The homoallylic alcohols were transformed into the
cyclization precursors 8-12 and 23-26 by a one-pot two-
step procedure involving addition to methyl glyoxylate
and subsequent in situ acetylation of the unstable hemi-
acetal (see Tables 1 and 2).6
* To whom correspondence should be addressed. Tele: +31 20
5255941. Fax: +31 20 5255670. E-mail: henkh@org.chem.uva.nl.
(1) For some examples see: (a) Class, Y. J .; DeShong, P. Chem. Rev.
1995, 95, 1843. (b) Norcross, R. D.; Paterson, I. Chem. Rev. 1995, 95,
2041. (c) Marko´, I. E.; Bayston D. J . Synthesis 1996, 297.
(2) (a) Gao, J .; Ha¨rter, R.; Gordon, D. M.; Whitesides, G. M. J . Org.
Chem. 1994, 59, 3714. (b) Kragl, U.; Go¨dde, A.; Wandrey, C.; Lubin,
N.; Auge´, C. J . Chem. Soc., Perkin Trans. 1 1994, 119.
(3) (a) Barnes, N. J .; Probert, M. A.; Wightman, R. H. J . Chem. Soc.,
Perkin Trans. 1 1996, 431. (b) Lubineau, A.; Queneau, Y. J . Carbohydr.
Chem. 1995, 14, 1285. (c) Lubineau, A.; Arcostanzo, H.; Queneau, Y.
Ibid. 1995, 14, 1307.
(4) Kuboki, A.; Okazaki, H.; Sugai, T.; Ohta, H. Tetrahedron 1997,
53, 2387 and references therein.
(5) (a) Horenstein, B. A.; Bruner, M. J . Am. Chem. Soc. 1996, 118,
10371 and references therein. (b) Martichonok, V.; Whitesides, G. M.
J . Org. Chem. 1996, 61, 1702.
In most cases, optimal conditions for the cyclization
reactions required BF3‚OEt2 (2 equiv) as the Lewis acid
(6) (a) Lolkema, L. D. M; Hiemstra, H.; Semeyn, C.; Speckamp, W.
N. Tetrahedron 1994, 50, 7115. (b) Lolkema, L. D. M; Semeyn, C.;
Hiemstra, H.; Speckamp, W. N. Ibid. 1994, 50, 7129.
(7) (a) Berger, D.; Overman, L. E. Synlett 1992, 811. (b) Hoffmann,
R. W.; Giesen, V.; Fuest, M. Liebigs Ann. Chem. 1993, 629. (c) Marko´,
I. E.; Bayston, D. J . Tetrahedron 1994, 50, 7141. (d) Blumenkopf, T.
A.; Overman, L. E. Chem. Rev. 1986, 86, 857.
(8) (a) Daub, G. W.; Heerding, D. A.; Overman, L. E. Tetrahedron
1988, 44, 3919. (b) Castro, P.; Overman, L. E.; Zhang, X.; Mariano, P.
S. Tetrahedron Lett. 1993, 34, 5243.
(9) (a) Brandsma, L. Preparative Polar Organometallic Chemistry;
Springer: New York, 1990; Vol. 2, p 116. (b) Ehlinger, E.; Magnus, P.
J . Am. Chem. Soc. 1980, 102, 5004. (c) Chan, T. H.; Labrecque, D.
Tetrahedron Lett. 1992, 33, 7997.
(10) Yamaguchi, M.; Hirao, I. Tetrahedron Lett. 1983, 24, 391.
(11) (a) Brown, C. A.; Ahuja, V. K. J . Chem. Soc., Chem. Commun.
1973, 553. (b) Brown, C. A.; Ahuja, V. K. J . Org. Chem. 1973, 38, 2226.
S0022-3263(97)00369-1 CCC: $14.00 © 1997 American Chemical Society