10.1002/anie.202104924
Angewandte Chemie International Edition
RESEARCH ARTICLE
[9]
J. Seetharaman, A. Kanigsberg, R. Slaaby, et al., J. Biol. Chem. 1998,
273, 13047-13052.
also remarkable when compared to covalent macrocycles
targeting all-equatorial carbohydrates; these rarely exceed[12l]
a
[10] a) W. I. Weis, K. Drickamer, Ann. Rev. Biochem. 1996, 65, 441-473; b)
M. Brandl, M. S. Weiss, A. Jabs, et al., J. Mol. Biol. 2001, 307, 357-377;
c) Z. R. Laughrey, S. E. Kiehna, A. J. Riemen, et al., J. Am. Chem. Soc.
2008, 130, 14625-14633; d) L. M. Salonen, M. Ellermann, F. Diederich,
Angew. Chem.-Int. Edit. 2011, 50, 4808-4842; e) J. L. Asensio, A. Arda,
F. J. Canada, et al., Accounts Chem. Res. 2013, 46, 946-954; f) W. T.
Chen, S. Enck, J. L. Price, et al., J. Am. Chem. Soc. 2013, 135, 9877-
9884; g) K. L. Hudson, G. J. Bartlett, R. C. Diehl, et al., J. Am. Chem.
Soc. 2015, 137, 15152-15160.
[11] a) R. P. Bonarlaw, A. P. Davis, B. A. Murray, Angew. Chem.-Int. Edit.
Engl. 1990, 29, 1407-1408; b) A. P. Davis, Chem. Soc. Rev. 2020, 49,
2531-2545; c) O. Francesconi, S. Roelens, ChemBioChem 2019, 20,
1329-1346.
[12] a) A. P. Davis, R. S. Wareham, 1998, 37, 2270-2273; b) A. P. Davis, R.
S. Wareham, Angew. Chem. Int. Edit. 1999, 38, 2978-2996 (ISSN: 1433-
7851; c) E. Klein, M. P. Crump, A. P. Davis, Angew. Chem.-Int. Edit. 2005,
44, 298-302; d) Y. Ferrand, M. P. Crump, A. P. Davis, Science 2007, 318,
619-622; e) Y. Ferrand, E. Klein, N. P. Barwell, et al., Angew. Chem.-Int.
Edit. 2009, 48, 1775-1779; f) C. F. Ke, H. Destecroix, M. P. Crump, et al.,
Nat. Chem. 2012, 4, 718-723; g) T. J. Mooibroek, J. M. Casas-Solvas, R.
L. Harniman, et al., Nat. Chem. 2016, 8, 69-74; h) T. J. Mooibroek, M. P.
Crump, A. P. Davis, Org. Biomol. Chem. 2016, 14, 1930-1933; i) P. Rios,
T. S. Carter, T. J. Mooibroek, et al., Angew. Chem.-Int. Edit. 2016, 55,
3387-3392; j) P. Rios, T. J. Mooibroek, T. S. Carter, et al., Chem. Sci.
2017, 8, 4056-4061; k) P. Stewart, C. M. Renney, T. J. Mooibroek, et al.,
Chem. Commun. 2018, 54, 8649-8652; l) R. A. Tromans, T. S. Carter, L.
Chabanne, et al., Nat. Chem. 2019, 11, 52-56; m) O. Francesconi, F.
Cicero, C. Nativi, et al., ChemPhysChem 2020, 21, 257-262; n) O.
Francesconi, M. Martinucci, L. Badii, et al., Chem.-Eur. J. 2018, 24, 6828-
6836; o) O. Francesconi, M. Gentili, C. Nativi, et al., Chem.-Eur. J. 2014,
20, 6081-6091; p) C. Nativi, O. Francesconi, G. Gabrielli, et al., Chem.-
Eur. J. 2012, 18, 5064-5072.
20-fold selectivity against galactose.[11b] The selectivity of 6 for 8
can be rationalized by the modelled interaction complementarity,
revealing CH···π interactions and ample (charge assisted)
hydrogen bonding interactions that are much like those observed
in natural lectins. It must be noted that the synthesis route to 6
can easily be diverted to a diverse range of variants. For example,
the solubility handle could be tweaked to make the binding core
of 6 water-soluble, or the pyridyl rings can be replaced by
(2-)substituted pyridyls for altered properties of the [Pd(Py)4]2+
moiety. Another prospect is the replacement of the square-planar
Pd(II) by octahedral metals that might aid in binding via an axial
vacant site.
It is concluded that 6 represents the first synthetic galectin mimic
and provides a platform that opens the venue towards the
preparation of a new family of carbohydrate binding molecules
that can target carbohydrates with axial substituents (such as
galactosides).
Acknowledgements
[13] a) M. Han, D. M. Engelhard, G. H. Clever, Chem. Soc. Rev. 2014, 43,
1848-1860; b) M. Yamashina, M. Akita, T. Hasegawa, et al., Sci. Adv.
2017, 3, 6; c) X. Schaapkens, E. O. Bobylev, J. N. H. Reek, et al., Org.
Biomol. Chem. 2020, 18, 4734-4738; d) X. Schaapkens, J. H. Holdener,
J. Tolboom, et al., ChemPhysChem 2021, doi:1002/cphc.202100229; e)
D. Yang, L. K. S. Krbek, L. Yu, et al., Angew. Chem.-Int. Edit. 2021, 60,
4485-4490.
[14] a) D. P. August, G. S. Nichol, P. J. Lusby, Angew. Chem.-Int. Edit. 2016,
55, 15022-15026; b) D. Preston, K. F. White, J. E. M. Lewis, et al.,
Chem.-Eur. J. 2017, 23, 10559-10567; c) L. S. Lisboa, J. A. Findlay, L. J.
Wright, et al., Angew. Chem.-Int. Edit. 2020, 59, 11101-11107; d) T. A.
Young, V. Marti-Centelles, J. Z. Wang, et al., J. Am. Chem. Soc. 2020,
142, 1300-1310.
[15] a) K. Palanichamy, M. F. Bravo, M. A. Shlain, et al., Chem.-Eur. J. 2018,
24, 13971-13982; b) K. Robinson, C. J. Easton, A. F. Dulhunty, et al.,
ChemMedChem 2018, 13, 1957-1971; c) K. Palanichamy, A. Joshi, T.
Mehmetoglu-Gurbuz, et al., J. Med. Chem. 2019, 62, 4110-4119; d) M.
F. Bravo, K. Palanichamy, M. A. Shlain, et al., Chem.-Eur. J. 2020, 26,
11782-11795.
[16] a) E. S. Feldblum, I. T. Arkin, Proc. Natl. Acad. Sci. U. S. A. 2014, 111,
4085-4090; b) I. Rozas, I. Alkorta, J. Elguero, J. Phys. Chem. A 1998,
102, 9925-9932.
This research was financially supported by the Netherlands
Organization for Scientific Research (NWO) with VIDI grant
number 723.015.006.
Keywords: carbohydrate recognition • galectin mimic •
galactosides • molecular recognition • carbohydrates
Notes and references
§ In addition to the nOe data, the spectra of 6 containing about 1 mM
of a carbohydrate revealed significantly broadened peaks of 7-10
compared to spectra of pure carbohydrates at the same concentration.
This too is highly indicative of binding (see Figure S49).
[1]
a) S. H. Barondes, V. Castronovo, D. N. W. Cooper, et al., Cell 1994, 76,
597-598; b) S. H. Barondes, D. N. W. Cooper, M. A. Gitt, et al., J. Biol.
Chem. 1994, 269, 20807-20810; c) H. Leffler, S. Carlsson, M. Hedlund,
et al., Glycoconjugate J. 2002, 19, 433-440; d) J. Dumic, S. Dabelic, M.
Flogel, Biochim. Biophys. Acta-Gen. Subj. 2006, 1760, 616-635; e) L.
Johannes, R. Jacob, H. Leffler, J. Cell Sci. 2018, 131, 9.
[2]
[3]
a) N. L. Perillo, K. E. Pace, J. J. Seilhamer, et al., Nature 1995, 378, 736-
739; b) N. L. Perillo, M. E. Marcus, L. G. Baum, J. Mol. Med. 1998, 76,
402-412; c) R. C. Hughes, Biochimie 2001, 83, 667-676; d) F. T. Liu, R.
J. Patterson, J. L. Wang, Biochim. Biophys. Acta-Gen. Subj. 2002, 1572,
263-273.
a) A. Danguy, I. Camby, R. Kiss, Biochim. Biophys. Acta-Gen. Subj. 2002,
1572, 285-293; b) F. T. Liu, G. A. Rabinovich, Nat. Rev. Cancer 2005, 5,
29-41; c) F. C. Chou, H. Y. Chen, C. C. Kuo, et al., Int. J. Mol. Sci. 2018,
19, 11.
[4]
[5]
a) G. R. Vasta, Nat. Rev. Microbiol. 2009, 7, 424-438; b) T. L. M. Thurston,
M. P. Wandel, N. von Muhlinen, et al., Nature 2012, 482, 414-U1515.
a) G. A. Rabinovich, L. G. Baum, N. Tinari, et al., Trends Immunol. 2002,
23, 313-320; b) N. C. Henderson, T. Sethi, Immunol. Rev. 2009, 230,
160-171; c) F. T. Liu, G. A. Rabinovich, in Year in Immunology 2, Vol.
1183 (Ed.: N. R. Rose), Wiley-Blackwell, Malden, 2010, pp. 158-182.
a) U. C. Sharma, S. Pokharel, T. J. van Brakel, et al., Circulation 2004,
110, 3121-3128; b) J. E. Ho, C. Y. Liu, A. Lyass, et al., J. Am. Coll. Cardiol.
2012, 60, 1249-1256.
[6]
[7]
[8]
N. C. Henderson, A. C. Mackinnon, S. L. Farnworth, et al., Proc. Natl.
Acad. Sci. U. S. A. 2006, 103, 5060-5065.
a) H. Leffler, S. H. Barondes, J. Biol. Chem. 1986, 261, 119-126; b) J. T.
Powell, Biochem. J. 1980, 187, 123-129; c) R. F. Cerra, M. A. Gitt, S. H.
Barondes, J. Biol. Chem. 1985, 260, 474-477.
5
This article is protected by copyright. All rights reserved.