10.1002/chem.202100307
Chemistry - A European Journal
FULL PAPER
the z-axis is recorded. The limitation of this method is that other
effects such as thermal lens effect may contribute to the 2PA
cross-sections.[22] The two-photon absorption properties of BTH-
CN, BTH-m-Br, BTH-o-Br and BTH-OCH3 are characterized by
an open-aperture femtosecond Z-scan technique. The excitation
source is a Ti:sapphire oscillator seeded regenerative amplifier
(pulse energy of 1.3 mJ at 800 nm) with an adjustable excitation
intensity. The as-obtained Z-scan curves (Figure 4) indicate that
BTH-CN, BTH-m-Br, BTH-o-Br and BTH-OCH3 have TPA
properties with the cross-section values (δ2) of 3167 GM, 3461
GM, 3179 GM and 4913 GM, respectively. Our results clearly
indicate that the value of the TPA cross sections (δ2) strongly
depends on the nature, position, and strength of the substituted
groups on the same frameworks. Since Br atom is a weaker
electron-withdrawing group than cyano species, the TPA cross
sections (δ2) of BTH-m-Br (3461) and BTH-o-Br (3179)are
larger than that of BTH-CN (3167). Comparing to the Br position,
the δ2 of m-substituted BTH is much larger than the o-substituted
one. As to the electron-donating group methoxyl, the two-photon
absorption cross section value is the strongest one. Our results
clearly confirm that the electron-rich group on the electron-
deficient frameworks normally produces the larger TPA cross-
sections δ2. Moreover, some recently reported acene and
nanographene-based TPA materials were listed in table S1.
Keywords: azaacene • anthrathiadiazole • synthon • two-photon
absorption • cycloaddition
(1) For recent reviews: a) Q. Ye, C. Y. Chi, Chem. Mater. 2014, 26, 4046-
4056; b) J. B. Li, S. Chen, Z. L. Wang, Q. C. Zhang, Chem. Rec. 2016, 3,
1518-1530; c) J. E. Anthony, Angew. Chem., Int. Ed. 2008, 47, 452-483;
d) J. B. Li, Q. C. Zhang, Synlett. 2013, 24, 686-696; e) X. L. Shi, C. Y.
Chi, Chem. Rec. 2016, 16, 1690-1700; f) C. Tonshoff, H. F. Bettinger,
Chem. Eur. J. 2021, 27, 3193-3212; (g) Z. Zhang, Q. Zhang, Mater
Chem Front, 2020, 4, 3419-3432.
(2) a) T. J. Ren, M. S. Song, J. W. Zhao, W. Y. Wang, X. X. Shen, C. Gao,
P. Y. Yi, J. C. Xiao, Dyes Pigm. 2016, 125, 356-361; b) B .Yang, J. F.
Zhao, Z. P. Wang, Z. L. Yang, Z. Q. Lin, J. W. Li, L. H. Xie, Z. F. An, H.
M. Zhang, J. N. Wen, W. Huang, Chin. Chem. Lett. 2019, 30, 1969-1973;
c) Z. Z. Wang, J. F. Li, S. M. Zhang, Q. Wang, G. L. Dai, B. Q. Liu, X. L.
Zhu, C. Kolodziej, C. McCleese, Chem. Eur. J. 2018, 24, 14442-14447;
D) X. Xiao, T. R. Hoye, Nat. Chem. 2018, 10, 838-844.
(3) a) D. J. Gundlach, J. E. Royer, S. K. Park, S. Subramanian, O. D.
Jurchescu, B. H. Hamadani, A. J. Moad, R. J. Kline, L. C. Teague, O.
Kirillov, C .A. Richter, J. G. Kushmerick, L. J. Richter, S. R. Parkin, T. N.
Jackson,J. E. Anthony, Nat. Mater. 2008, 7, 216-221; b) J. Zhang, C. Y.
Wang, G. L. Long, N. Aratani, H. Yamada, Q. C. Zhang, Chem. Sci.
2016, 7, 1309-1313; c) J. L. Wang, M. Chu, J. X. Fan, T. K. Lau, A. M.
Ren, X. H. Lu, Q. Miao. J. Am. Chem. Soc. 2019, 141, 3589-3596; d) X.
J. Yang, X. L. Shi, N. Aratani, T. P. Goncalves, K. W. Huang, H. Yamada,
C. Y. Chi, Q. Miao, Chem. Sci. 2016, 7, 6176-6181.
(4) a) L. Ahrens, J. Butscher, V. Brosius, F. Rominger, J. Freudenberg, Y.
Vaynzof, U. H. F. Bunz, Chem. Eur. J. 2019, 26, 412-418; b) X. P. Wang,
X. Y. Liu, R. Tom, C. Cook, B. Schatschneider, N. Marom, J. Phy. Chem.
C 2019, 123, 5890-5899. c) W. Chen, X. Yang, G. Long, X. Wan, Y.
Chen, Q. Zhang, J. Mater. Chem. C 2015, 3, 4698-4705; d) T. Okamoto,
T. Suzuki, H. Tanaka, D. Hashizume, Y. Matsuo, Chem. Asian J. 2012, 7,
105-111; e) M. J. Sung, J. Hong, H. Cha, Y. Jiang, C. E. Park, J. R.
Durrent, T. K. An, S. K. Kwon, Y. H. Kim, Chem. Eur. J. 2019, 25,
12316-12324.
Table 2. The TPA cross-sections δ2 at 800 nm for BTH-CN,
BTH-m-Br, BTH-o-Br and BTH-OCH3 measured by an open-
aperture Z-Scan technique.
Comp
δ2max/GM
3461
3179
4913
3167
BTH-m-Br
BTH-o-Br
BTH-OCH3
BTH-CN
(5) a) Q. Miao, T. Q. Nguyen, T. Someya. J. Am. Chem. Soc. 2003, 125,
10284-10287; b) J. B. Li , Y. B. Zhao, J. Lu, J. P. Zhang, Y. Zhao, X. M.
Sun, Q. C. Zhang, J. Org. Chem. 2015, 80, 109-113; c) S. S. Zade, M.
Bendikov, J. Phys. Org. Chem. 2012, 25, 452-459; d) I. Kaur, M.
Jazdzyk, N. N. Stein, P. Prusevich, G. P. Miller, J. Am. Chem. Soc. 2010,
132, 1261-1263; (e) P. Gu, Z. Wang, Q. Zhang, J. Mater. Chem. B 2016,
4, 7060 – 7074; (f) P. Gu, N. Wang, A. Wu, Z. Wang, M. Tian, Z. Fu, X.
Conclusion
In conclusion, we have prepared four anthrathiadiazole
derivatives with different substituents by simple [4+2]
W. Sun, Q. Zhang, Chem. Asian J. 2016, 11, 2135–2138.
a
(6) a) W. Jiang, Y. Li, Z. H. Wang, Chem. Soc. Rev. 2013, 42, 6113−6127; b)
X. Y. Wang, J. Y. Wang, J. Pei, Chem. - Eur. J. 2015, 21, 3528−3539; c)
M. Stolar, T. Baumgartner, Chem. - Asian J. 2014, 9, 1212−1225; d) H.
M. Qu, C. Y. Chi, Curr. Org. Chem. 2010, 14, 2070−2108; e) K. Nishimur,
K. Hirano, M. Miura, Org. Lett. 2020, 22, 3185-3189. f) C. Y. Huang, X. F.
Liao, K. Gao, L. J. Zuo, F. Lin, X. L. Shi, C. Z. Li, H. B. Liu, X. S. Li, F.
Liu, Y. W. Chen, H. Z. Chen, A. K. Y. Jen, Chem. Mater. 2018, 30, 5429-
5434.
cycloaddition reaction between thiadiazolequinones and a, a, a’,
a’-tetrabromo o-xylene derivatives. The photophysical,
electrochemical and two-photon absorption (TPA) properties of
the as-prepared compounds were investigated. The as-prepared
compounds not only exhibited a potential nonlinear optical
application, but also could have a great potential to enrich the
number of azaacenes. We also found that the TPA cross-
sections δ2 is strongly affected by the nature, position, and
strength of the substituted groups on the same electron-deficient
frameworks. Generally, electron-donating and weaker electron-
accepting groups give larger δ2 value.
(7) a) U. H. F. Bunz, J. Freudenberg, Acc. Chem. Res. 2019, 52, 1575-1587;
b) J. B. Li, Q. C. Zhang, ACS Appl. Mater. Interf. 2015, 51, 28049-28062;
c) Q. Miao, Adv. Mater. 2014, 26, 5541-5549. d) A. H. Endres, M.
Schaffroth, F. Paulus, H. Reiss, H. Wadepohl, F. Rominger, R. Kramer,
U. H. F. Bunz, J. Am. Chem. Soc. 2016, 138, 1792-1795; e) L. Ahrens, J.
Butscher, V. Brosius, F. Rominger, J. Freudenberg, Y. Vaynzof, U. H. F.
Bunz, Chem. Eur. J. 2020, 26, 412-418; f) G. Li, Y. C. Wu, J. K. Gao, C.
Y. Wang, J. B. Li, H. C. Zhang, Y. Zhao, Y. L. Zhao, Q. C. Zhang, J. Am.
Chem. Soc. 2012, 134, 20298-20301; g) C. Y. Wang, J. Zhang, G. K.
Long, N. Aratani, H. Yamada, Y. Zhao, Q. C. Zhang, Angew. Chem. Int.
Ed. 2015, 54, 6292-6296; h) B. L. Hu, C. B. An, M. Wagner, G. Ivanova,
A. Ivanova, M. Baumgarten, J. Am. Chem. Soc. 2019, 141, 5130-5134; i)
G. J. Richards, J. P. Hill, T. Mori, Org. Biomol. Chem. 2011, 9, 5005-
5017; j) S. Hahn, F. L. Geyer, S. Koser, J. Org. Chem. 2016, 18, 8485-
8494; k) Q. Zhao, Y. H. Li, Z. P. Wang, J. F. Wang, B. H. Yan, Y. Yu, J.
W. Li, J. Y. Lin, J. F. Zhao, J. N. Wang, X. H. Zhao, Y. Q. Gao, W.
Huang, Dyes Pig. 2019, 170, 107616; L) K. Z. Zhao, F. Yu, W. B. Liu, Y.
J. Huang, A. A. Sadi, Y. Li, Q. C. Zhang, J. Org. Chem. 2020, 85, 101-
107; (m) G. Li, K. Zheng, C. Wang, K. S. Leck, F. Hu, X. W. Sun, Q.
Zhang, ACS Appl. Mater. interface 2013, 5 (14), 6458–6462; (n) P. Gu, Y.
Acknowledgements
This work was supported by National Science Foundation of
China (No. 51203127, 20901063, 52073167 and 21702132),
Guangdong Basic and Applied Basic Research Foundation.
National Training Program of Innovation and Entrepreneurship
for Undergraduates (201810490019). QZ thanks the support
from starting funds from City University of Hongkong.
Zhao, J. He, J. Zhang, C. Wang, Q. Xu, J. Lu, X. Sun, Q. Zhang, J. Org.
Chem. 2015, 80, 3030-3035.
4
This article is protected by copyright. All rights reserved.