Please do not adjust margins
Organic & Biomolecular Chemistry
Page 4 of 6
ARTICLE
Journal Name
increased to 1.5 equiv. and reaction was conducted under
argon atmosphere, 2a was obtained in yield of 71%, which
indicated that Ph2I+OTf- could be the oxidant in this coupling
(Scheme 3, eq.(2)). Moreover, only 23% coupling product 2a
was obtained with the optimized condition under argon
atmosphere instead of air (Scheme 3, eq.(3)). Finally, the
reaction was proceeded without Ph2I+OTf- under argon
atmosphere, 2a was produced in yield of 29%. The two
experimental results suggested that air might play a role as
oxidation as same as Ph2I+OTf-.
13864; (f) S. H. Cho, J. Y. Kim, J. Kwak and S. Chang, Chem.
Soc. Rev., 2011, 40, 5068; (g) X. Bugaut and F. Glorius, Angew.
Chem., Int. Ed., 2011, 50, 7479; (h) S. A. Girard, T. Knauber
and C.-J. Li, Angew. Chem., Int. Ed., 2012, 51, 5971; (i) M.
Takahashi, K. Masui, H. Sekiguchi, N. Kobayashi, A. Mori, M.
DOI: 10.1039/C6OB01471B
Funahashi and N. Tamaoki, J. Am. Chem. Soc., 2006, 128
10930; (g) Y. Wu, J. Wang, F. Mao and F. Y. Kwong, Chem.
Asian J., 2014, , 26.
,
9
2
3
(a) M. Movassaghi and M. A. Schmidt, Angew. Chem., Int. Ed.,
2007, 46, 3725; (b) S. Tadano, Y. Mukaeda and H. Ishikawa,
Angew. Chem., Int. Ed., 2013, 52, 7990; (c) K. C. Nicolaou and
D. Gray, Angew. Chem., Int. Ed., 2001, 40, 761; (d) K. C.
Nicolaou and D. L. F. Gray, J. Am. Chem. Soc., 2004, 126, 607;
Based on the control experiment results and literatures,1a, 15
the possible mechanism for this oxidative homo-coupling is
proposed in Scheme 4. The first step of this transformation is
enolization of
1 to afford enolate ions 6
. Meanwhile the CuI is
oxidized in situ to active CuII/CuIII species by Ph2I+OTf- and air.
(e) S. Ghosh, S. Chaudhuri and A. Bisai, Org. Lett., 2015, 17
,
Subsequently enolate ions
transfer to provide radical
6
7
further undergoes single electron
. Finally, radicial-radicial coupling
1373.
(a) N. R. Waterfield, M. Sanchez-Contreras, I. Eleftherianos, A.
Dowling, G. Yang, P. Wilkinson, J. Parkhill, N. Thomson, S. E.
Reynolds, H. B. Bode, S. Dorus and R. H. Ffrench-Constant,
Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 15967; (b) D. H. Kim,
B.-L. Lee, H. Moon, H. M. Kang, E. J. Jeong, J.-I. Park, K.-M.
Han, S. Lee, B. W. Yoo, B. W. Koo, J. Y. Kim, W. H. Lee, K. Cho,
H. A. Becerril and Z. Bao, J. Am. Chem. Soc., 2009, 131, 6124;
(c) X. Zeng, B. Yin, Z. Hu, C. Liao, J. Liu, S. Li, Z. Li, M. C.
Nicklaus, G. Zhou and S. Jiang, Org. Lett., 2010, 12, 1368; (d)
G. S. Basarab, P. J. Hill, C. E. Garner, K. Hull, O. Green, B. A.
Sherer, P. B. Dangel, J. I. Manchester, S. Bist, S. Hauck, F.
Zhou, M. Uria-Nickelsen, R. Illingworth, R. Alm, M. Rooney
and A. E. Eakin, J. Med. Chem., 2014, 57, 6060; (e) H. B. Bode,
Curr. Opin. Chem. Biol., 2009, 13, 224.
of 7 gives the desired product 2.
Scheme 4. Proposed mechanism of oxidative homo-coupling
4
5
(a) H. Kato, K. Tani, H. Kurumisawa and Y. Tamura,
Heterocycles, 1987, 26, 1313; (b) K. K. Andersen, D. D. Bray, A.
Kjæ r, Y. Lin and M. Shoja, Acta Chem. Scand., 1997, 51, 1000.
(a) Z. Li and C.-J. Li, J. Am. Chem. Soc., 2004, 126, 11810; (b) Z.
Li and C.-J. Li, Org. Lett., 2004, 6, 4997; (c) Z. Li and C-J. Li, J.
In summary, we have established a practical protocol for the
homo-coupling of thiazoline-4-carboxylates to construct vicinal
carbon-hetero quaternary centers with a copper catalytic
system. A variety of functional groups and heterocycles were
tolerated. A radical-mediated mechanism was tentatively
proposed. Further utilization of the method could generate
functionalized 4,4'-bithiazoline-4-carboxylate derivatives and
provided a facile and efficient approach for the construction of
4,4'-bithiazole derivatives by oxidative decarboxylation of
homo-coupling products. Further efforts to the applications of
this method are currently underway.
Am. Chem. Soc., 2005, 127, 3672; (d) Z. Li and C.-J. Li, J. Am.
Chem. Soc., 2006, 128, 56; (e) M. Niu, Z. Yin, H. Fu, Y. Jiang
and Y. Zhao, J. Org. Chem., 2008, 73, 3961; (f) N. Borduas and
D. A. Powell, J. Org. Chem., 2008, 73, 7822; (g) K. Cheng, L.
Huang and Y. Zhang, Org. Lett., 2009, 11, 2908; (h) F. Yang, J.
Li, J. Xie and Z.-Z. Huang, Org. Lett., 2010, 12, 5214; (i) J. E. M.
N. Klein, A. Perry, D. S. Pugh and R. J. K. Taylor, Org. Lett.,
2010, 12, 3446; (j) C. Gou, J. Song, S.-W. Luo and L.-Z. Gong,
Angew. Chem., Int. Ed., 2010, 49, 5558; (k) G. Zhang, Y.
Zhang and R. Wang, Angew. Chem., Int. Ed., 2011, 50, 10429;
(l) S. Fan, Z. Chen and X. Zhang, Org. Lett., 2012, 14, 2950; (m)
Y. Gao, M. Yin, W. Wu, H. Huang and H. Jiang, Adv. Synth.
Catal., 2013, 355, 2263; (n) S. Lei, Y. Mai, C. Yan, J. Mao and
H. Cao, Org. Lett., 2016, DOI: 10.1021/acs.orglett.6b01588.
(a) Y. Katsura, S. Nishino, Y. Inoue, K. Sakane, Y. Matsumoto,
C. Morinaga, H. Ishikawa and H. Takasugi, J. Med. Chem.,
2002, 45, 143; (b) G. S. Basarab, P. J. Hill, C. E. Garner, K. Hull,
O. Green, B. A. Sherer, P. B. Dangel, J. I. Manchester, S. Bist,
S. Hauck, F. Zhou, M. Uria-Nickelsen, R. Illingworth, R. Alm,
M. Rooney and A. E. Eakin, J. Med. Chem., 2014, 57, 6060; (c)
T. Nakagawa, Y. Hasegawa and T. Kawai, J. Phys. Chem. A,
2008, 112, 5096; (d) K. Mouri, S. Saito and S. Yamaguchi,
Generous financial support from the National Natural
Science Foundation of China (NSFC21272276) and the Natural
Science Foundation of Jiangsu Province (BK20130645) is
gratefully acknowledged.
6
Notes and references
1
For selected reviews, see: (a) C.-J. Li, Acc. Chem. Res., 2009,
42, 335; (b) C. S. Yeung and V. M. Dong, Chem. Rev., 2011,
111, 1215; (c) J. L. Bras and J. Muzart, Chem. Rev., 2011, 111
,
1170; (d) C. Liu, H. Zhang, W. Shi and A. Lei, Chem. Rev., 2011,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins