5748
J. Am. Chem. Soc. 1997, 119, 5748-5749
Scheme 1. Putative Three-Step Mechanism of GlmS
Inactivation by Compound 1
Design, Synthesis, and Evaluation of the First
Mechanism-Based Inhibitor of Glucosamine
6-Phosphate Synthase
Fre´de´ric Massie`re, Marie-Ange Badet-Denisot,
Lo¨ıc Rene´, and Bernard Badet*
Institut de Chimie des Substances Naturelles
Centre National de la Recherche Scientifique
91198 Gif-sur-YVette cedex, France
ReceiVed January 27, 1997
Scheme 2. Synthesis of Compound 1a
Glucosamine 6-phosphate synthase (GlmS, EC 2.6.1.16)
catalyzes the transfer of NH2 from the amide group of
L-glutamine (glutamine dependent amidotransferase) to D-
fructose 6-phosphate (6P).1 The participation of the N-terminal
cysteine residue in the catalysis and the structure of its glutamine
binding domain2 definitely established GlmS as a member of
the N-terminal nucleophile(Ntn)-hydrolase superfamily.3 The
formation of glucosamine-6P catalyzed by GlmS is a key step
in the biosynthesis of bacterial peptidoglycan and fungal chitin.
Therefore, GlmS has been considered as an interesting thera-
peutic target. Glutamine site-directed inhibitors of GlmS
actually display good in Vitro antibacterial and antifungal
activities when incorporated in oligopeptides.4 Most of these
inhibitors are affinity labels, i.e., glutamine analogs incorporating
one electrophilic function (halide,4fg,5 R-keto epoxide,6 R,â-
unsaturated carbonyl derivatives4) that interact irreversibly with
residue Cys1 of GlmS. The need to find more specific inhibitors
prompted us to design glutamine derivatives bearing a latent
electrophilic function. As a first result of this novel approach,
we present in this paper the first mechanism-based inhibitor,
L-γ-glutamyl-2-[((p-difluoromethyl)phenyl)thio]glycine, referred
to as compound 1.
a Conditions: (a) 2-methylpropan-2-ol, DCC, DMAP (cat), dioxane,
78%; (b) tert-butyl glyoxylate, DMF, cyclohexane, reflux, 89%; (c)
acetic anhydride, pyridine, 79%; (d) 4-mercaptobenzaldehyde, triethyl-
amine, DMF, 95%; (e) DAST, dichloromethane, 39%; (f) 20%
trifluoroacetic acid-dichloromethane, 61%.
step a) should lead to the formation of glutamate and N-
deacylated R-arylthioglycine which is known to be highly
unstable.9 Its decomposition (step b) would generate ammonia
and glyoxylate on the one hand as well as HF and 4-thioquinone
fluoromethide on the other hand. This latter powerful electro-
phile would then react with any active-site nucleophilic residue
(step c), resulting in enzyme inactivation. Although previous
approaches have been based on the generation of quinone
methide or quinonimine methide10,11 to achieve phosphatase10d-f
or elastase10c,11 inhibition, this is the first report of utilization
of 2-heteroatom-substituted glycines in the inactivation of a
glutamine-hydrolyzing enzyme.
Compound 1 was prepared according to Scheme 2. Con-
densation of suitably protected glutamine and tert-butyl gly-
oxylate12 afforded the 2-hydroxyglycine 2 in 90% yield, as
expected from earlier studies performed with simple amides.13
After conversion of 2 into the acetoxy derivative, nucleophilic
substitution with freshly prepared 4-mercaptobenzaldehyde14
afforded N-(γ-glutamyl)-2-(arylthio)glycine 3 (76%). This
aldehyde was converted with DAST15 into the difluoro deriva-
tive and deprotected by trifluoroacetic acid to give compound
1 as an undefined mixture of epimers16 in 12.4% overall yield
from Boc-L-glutamine. Attempts to prepare the 2-(phenoxy)-
glycine and the 2-(anilino)glycine analogs failed because of the
instability of these products. Compound 1 which turned out to
be perfectly stable under the conditions of enzyme assay even
The good inhibitory properties of N3-fumaroyl-2,3-diamino-
propionate derivatives7 had previously shown that the glutamine
site of GlmS is large enough to accommodate a bulky group
that would be linked to the N5-amide nitrogen of substrate
glutamine. During the course of our investigations in the
chemistry of R-heteroatom-substituted glycines,8 compound 1
was designed as a possible mechanism-based GlmS inhibitor.
Enzyme-catalyzed hydrolysis of its peptide bond (Scheme 1,
* Author to whom correspondence should be addressed at the follow-
ing: phone: 33 01 69 82 31 06; fax 33 01 69 07 72 47; e-mail:
(1) Badet-Denisot, M.-A.; Rene´, L.; Badet, B. Bull. Soc. Chim. Fr. 1993,
130, 249-255.
(2) Isupov, M. N.; Obmolova, G.; Butterworth, S.; Badet-Denisot, M.-
A.; Badet, B.; Polikarpov, I.; Littlechild, J. A.; Teplyakov, A. Structure
1996, 4, 801-810.
(3) Brannigan, J. A.; Dodson, G.; Duggleby, H. J.; Moody, P. C. E.;
Smith, J. L.; Tomchick, D. R.; Murzin, A. G. Nature 1995, 278, 416-419.
(4) (a) Kenig, M.; Abraham, E. P. J. Gen. Microbiol. 1976, 94, 37-45.
(b) Chmara, H. J. Gen. Microbiol. 1985, 131, 265-271. (c) Milewski, S.;
Chmara, H.; Andruszkiewicz, R.; Borowski, E.; Zaremba, M.; Borowski,
J. Drugs Exp. Clin. Res. 1988, 14, 461-465. (d) Shoji, J.; Hindo, H.;
Sakazaki, R.; Kato, T.; Hattori, T.; Matsumoto, K.; Tawara, K.; Kikuchi,
J.; Terui, Y. J. Antibiot. 1989, 42, 869-874. (e) Andruszkiewicz, R.;
Milewski, S.; Zeniawa, T.; Borowski, E. J. Med. Chem. 1990, 33, 132-
135. (f) Andruszkiewicz, R.; Chmara, H.; Milewski, S.; Zeniawa T.;
Borowski, E. J. Med. Chem. 1990, 33, 2755-2759. (g) Andruszkiewicz,
R.; Chmara, H.; Zeniawa, T.; Borowski, E. Eur. J. Med. Chem. 1994, 29,
61-67.
(5) Auvin, S.; Cochet, O.; Kucharczyk, N.; Le Goffic, F.; Badet, B.
Bioorg. Chem. 1991, 19, 143-151.
(6) (a) Chmara, H.; Za¨hner, H. Biochim. Biophys. Acta 1984, 787, 45-
52. (b) Chmara, H.; Za¨hner, H.; Borowski, E. J. Antibiot. 1984, 37, 1038-
1043. (c) Baldwin, J. E.; Adlington, R. M.; Mitchell, M. B. J. Chem. Soc.,
Chem. Commun. 1993, 1332-1335. (d) Crossley, M. J.; Stamford, A. W.
Aust. J. Chem. 1993, 46, 1443-1446.
(9) (a) Kingsbury, W. D.; Boehm, J. C.; Mehta, R. J.; Grappel, S. F.;
Gilvarg, C. J. Med. Chem. 1984, 27, 1447-1451. (b) Kingsbury, W. D.;
Boehm, J. C.; Perry, D.; Gilvarg, C. Proc. Natl. Acad. Sci. U.S.A. 1984,
81, 4573-4576. (c) Kraus, J.-L.; Attardo, G. Eur. J. Med. Chem. 1992, 27,
19-26.
(10) (a) Walsh, C. Tetrahedron 1982, 38, 871-909. (b) Abeles, R. H.
Chem. Eng. News 1983, Sept. 19, 48-56. (c) Wakselman, M. NouV. J.
Chim. 1983, 7, 439-447. (d) Myers, J. K.; Widlanski, T. S. Science 1993,
262, 1451-1453. (e) Born, T. L.; Myers, J. K.; Widlanski, T. S.; Rusnak,
F. J. Biol. Chem. 1995, 270, 25651-25655. (f) Stowell, J. K.; Widlanski,
T. S.; Kutateladze, T. G.; Raines, R. T. J. Org. Chem. 1995, 60, 6930-
6936.
(11) Vergely, I.; Boggetto, N.; Okochi, V.; Golpayedani, S.; Reboud-
Ravaux, M.; Kobaiter, R.; Joyeau, R.; Wakselman, M. Eur. J. Med. Chem.
1995, 30, 199-208.
(12) Carpino, L. A. J. Org. Chem. 1964, 29, 2820-2824.
(13) (a) Zoller, U.; Ben-Ishai, D. Tetrahedron 1975, 31, 863-866. (b)
Schouteeten, A.; Christidis, Y.; Mattioda, G. Bull. Soc. Chim. Fr. 1978,
248-254.
(7) (a) Chmara, H.; Andruszkiewicz, R.; Borowski, E. Biochim. Biophys.
Acta 1986, 870, 357-366. (b) Badet, B.; Vermoote, P.; Le Goffic, F.
Biochemistry 1988, 27, 2282-2287. (c) Kucharczyk, N.; Denisot, M.-A.;
Le Goffic, F.; Badet, B. Biochemistry 1990, 29, 3668-3676.
(8) Qasmi, D.; Rene, L.; Badet, B. Tetrahedron Lett. 1993, 34, 3861-
3862.
(14) Young, R. N.; Gauthier, J.-Y.; Coombs, W. Tetrahedron Lett. 1984,
25, 1753-1756.
(15) Diethylaminosulfur trifluoride. For a review, see: Hudlicky, M. Org.
React. 1988, 35, 513-637.
S0002-7863(97)00254-0 CCC: $14.00 © 1997 American Chemical Society