Journal of the American Chemical Society
Page 6 of 7
Gothelf, K. V. Angew. Chem., Int. Ed. 2010, 49, 7923–7925. (d)
Noguchi, T.; Naito, H. Tetrahedron 1985, 41, 5307–5311. (c) Bierꢀ
McQuade, D. T.; Seeberger, P. H. J. Org. Chem. 2013, 78, 6384–
6389.
nacki, W.; Gdula, A. Synthesis 1979, 37–38.
1
2
3
4
5
6
7
8
(22) (a) Adam, W.; Richter, M. J. J. Org. Chem. 1994, 59, 3335–
3340. (b) Brünker, H.ꢀG.; Adam, W. J. Am. Chem. Soc. 1995, 117,
3976–3982. (c) Adam, W.; Brünker, H.ꢀG.; Kumar, A. S.; Peters, E.ꢀ
M.; Peters, K.; Schneider, U.; von Schnering, H. G. J. Am. Chem. Soc.
1996, 118, 1899–1905.
(6) (a) Aubry, J.ꢀM.; Bouttemy, S. J. Am. Chem. Soc. 1997, 119,
5286–5294. (b) Wahlen, J.; de Vos, D. E.; Groothaert, M. H.;
Nardello, V.; Aubry, J.ꢀM.; Alsters, P. L.; Jacobs, P. A. J. Am. Chem.
Soc. 2005, 127, 17166–17167. (c) Pierlot, C.; Nardello, V.; Schrive,
J.; Mabille, C.; Barbillat, J.; Sombret, B.; Aubry, J.ꢀM. J. Org. Chem.
2002, 67, 2418–2423.
(7) (a) Klaper, M.; Linker, T. Chem. Eur. J. 2015, 21, 8569–8577. (b)
Martinez, G. R.; Ravanat, J.ꢀL.; Medeiros, M. H. G.; Cadet, J.; Di
Mascio, P. J. Am. Chem. Soc. 2000, 122, 10212–10213. (c) Pierlot,
C.; Hajjam, S.; Barthélémy, C.; Aubry, J.ꢀM. J. Photochem. Photobiꢁ
ol. B: Biol. 1996, 36, 31–39.
(8) (a) Cló, E.; Snyder, J. W.; Ogilby, P. R.; Gothelf, K. V. ChemBiꢁ
oChem 2007, 8, 475–481. (b) Kuimova, M. K.; Yahioglu, G.; Ogilby,
P. R. J. Am. Chem. Soc. 2009, 131, 332–340. (c) Dougherty, T. J.;
Gomer, C. J.; Henderson, B. W.; Jori, G.; Kessel, D.; Korbelik, M.;
Moan, J.; Peng, Q. J. Natl. Cancer Inst. 1998, 90, 889–905. (d) Henꢀ
derson, B. W.; Dougherty, T. J. Photochem Photobiol. 1992, 55, 145–
157.
(9) (a) Moor, A. C. E.; Ortel, B.; Hasan, T.; Photodynamic Therapy;
Patrice, M. Ed.; Royal Society of Chemistry: Cambridge, 2003; Ch. 2,
pp19–58. (b) Bonnett, R. Chem. Soc. Rev. 1995, 24, 19–33. (c)
Bartusik, D.; Aebisher, D.; Ghogare, A.; Ghosh, G.; Abramova, I.;
Hasan, T.; Greer, A. Photochem. Photobiol. 2013, 89, 936–941. (d)
Tromberg, B.; Kimel, S.; Orenstein, A.; Barker, S.; Hyatt, J.; Nelson,
J.; Roberts, W.; Berns, M. J. Photochem. Photobiol. B: Biol. 1990, 5,
121–126.
(10) Orensten, A.; Kostenrich, G.; Roitman, L.; Shechtman, Y.;
Kopolovic, Y.; Ehrenberg, B.; Maic, Z. Br. J. Cancer 1996, 73, 937–
944.
(11) Davis, M. J. Photochem. Photobiol. Sci. 2004, 3, 17–25. (b)
Doleiden, F. H.; Fahrenholtz, S. R.; Lamola, A. A.; Trozzolo, A. M.
Photochem. Photobiol. 1974, 20, 519–521. (c) Sies, H.; Menck, C. F.
M. Mutat. Res. 1992, 275, 367–315.
(12) (a) Hatz, S.; Poulsen, L.; Ogilby, P. R. Photochem. Potobiol.
2008, 84, 1284–1290. (b) Skovsen, E.; Snyder, J. W.; Lambert, J. D.
C.; Ogilby, P. R. J. Phys. Chem. B 2005, 109, 8570–8573.
(13) Redmond, R. W.; Kochevar, I. E. Photochem. Photobiol. 2006,
82, 1178–1186.
(14) (a) Breitenbach, T.; Kuimova, M. K.; Gbur, P.; Hatz, S.; Schack,
N. B.; Pedersen, B. W.; Lambert, J. D. C.; Poulsen, L.; Ogilby, P. R.
Photochem. Photobiol. Sci., 2009, 8, 442–452. (b) Snyder, J. W.;
Skovsen, E.; Lambert, J. D. C.; Poulsen, L.; Ogilby, P. R. Phys.
Chem. Chem. Phys. 2006, 8, 4280–4293. (c) Ogilby, P. R. Photoꢁ
chem. Photobiol. Sci. 2010, 9, 1543–1560. (d) Kuimova, M. K.;
Yahioglu, G.; Ogilby, P. R. J. Am. Chem. Soc. 2009, 131, 332–340.
(15) Moan, J.; Berg, K. Photochem. Photobiol. 1991, 53, 549‒553.
(16) a) Voigt, N. V.; Tørring, T.; Rotaru, A.; Jacobsen, M. F.; Ravnsꢀ
baek, J. B.; Subramani, R.; Mamdouh, W.; Kjems, J.; Mokhir, A.;
Besenbacher, F.; Gothelf, K. V. Nat. Nanotechnol. 2010, 5, 200–203.
(b) Helmig, S.; Rotaru, A.; Arian, D.; Kovbasyuk, L.; Arnbjerg, J.;
Ogilby, P. R.; Kiems, J.; Mokhir, A.; Besenbacher, F.; Gothelf, K. V.
ACS Nano 2010, 4, 7475–7480. (c) Tørring, T.; Helmig, S.; Ogilby, P.
R.; Gothelf, K. V. Acc. Chem. Res. 2014, 47, 1799–1806.
(17) To, T.ꢀL.; Fadul, M. J.; Shu, X. Nature Commun. 2014, 5, 4072‒
4080.
(18) Klaper, M.; Linker, T. J. Am. Chem. Soc. 2015, 137, 13744–
13747.
(19) Bonnett, R.; McGarvey, D. J.; Harriman, A.; Land, E. J.;
Truscott, T. G.; Winfield, U.ꢀJ. Photchem. Photobiol. 1988, 48, 271–
276.
(20) Borocci, S.; Marotti, F.; Mancini, G.; Monti, D.; Pastorini, A.
Langmuir 2001, 17, 7198–7203.
(21) (a) ShrestaꢀDawadi, P. B.; Lugtenburg, J. Eur. J. Org. Chem.
2003, 4654–4663. (b) Mori, K.; Sugai, T.; Maeda, Y.; Okazaki, T.;
(23) To ensure consistent 1O2 quantum yields for all following kinetic
experiments, we used the corresponding SAS with the same chain
length as sensitizer.
(24) Wilkinson, F.; Helmann, W. P.; Ross, A. B. J. Phys. Chem. Ref.
Data 1995, 24, 663–1021.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(25) (a) Ogilby, P. R.; Foote, C. S. J. Am. Chem. Soc. 1983, 105,
3423–3430. (b) Aubry, J.ꢀM.; MandardꢀCazin, B.; Rougee, M.;
Bensasson, R. V. J. Am. Chem. Soc. 1995, 117, 9159–9164.
(26) Tao, F.; Bernasek, S. L. .Chem. Rev. 2007, 107, 1408–1453.
(27) Dang, H.ꢀS.; Davies, A. G.; Davison, I. G. E.; Schiesser, C. H. J.
Org. Chem. 1990, 55, 1432–1438.
(28) Girotti, A. W. Lipid Res. 1998, 39, 1529–1542.
(29) Börjesson, K.; Preus, S.; ElꢀSagheer, A. H.; Brown, T.; Albinsꢀ
son, B.; Wilhelmsson, L. M. J. Am. Chem. Soc. 2009, 131, 4288–
4293.
6
ACS Paragon Plus Environment