(h-C5Me5)TiMe2(OC6F5). 1H NMR (CD2Cl2, 223 K), d 1.86 (s, 15 H,
C5Me5), 0.55 (s, 3 H, Ti–Me); 13C{1H} NMR (CD2Cl2, 223 K), d 141.1 (d,
o-CF, JCF 231.5 Hz), 138.7 (d, m-CF, JCF 241.5 Hz), 135.5 (d, p-CF, JCF
241.5 Hz), 124.2 (C5Me5), 59.0 (Ti–Me), 12.1 (C5Me5); 19F NMR (CD2Cl2,
298 K, ref. CFCl3), d 2160.1 (m, 2 F, o-F), 2167.0 (m, 2 F, m-F), 2171.3
(t, 1 F, p-F).
was there evidence from spin-transfer experiments for Ti–Me/
B–Me exchange, as occurs in zirconocene systems.4a–d
Compounds 1,3 2 and 3 all behave as ethene and propene
polymerization catalysts under strictly anhydrous conditions in
toluene. While the polyethylene formed is generally too
insoluble for even high-temperature GPC measurements, the
molecular masses of the polypropylene formed at 195 K
decrease in the order 2 (Mw = 2.3 3 106, Mw/Mn = 1.7) > 3
(Mw = 2.0 3 106, Mw/Mn = 1.7) > 1 (Mw = 0.3 3 106, Mw/Mn
= 1.3). The low dispersities observed are consistent with single
site catalysts in all cases,1 but the most Lewis acidic catalyst
gives the highest molecular mass polymer, just the opposite to
apparent trends in metallocene systems.5 On the other hand, the
yields of polymers obtained with 2 and 3 are about 30% lower
than those obtained with 1, consistent with stronger borate
coordination to the more Lewis acidic catalytic sites. Thus
combination of the types of Lewis acidic complexes described
here with counter anions which, perhaps for steric reasons,8
coordinate less weakly than [BMe(C6F5)3]2, may well lead to
alkene polymerization catalysts of high activity.
(h-C5Me5)TiMe(OC6F5)2. 1H NMR (CD2Cl2, 223 K), d 1.89 (s, 15 H,
C5Me5), 1.09 (s, 3 H, Ti–Me); 13C{1H} NMR (CD2Cl2, 223 K), d 139.9 (d,
o-CF, JCF 251.5 Hz), 138.1 (d, m-CF, JCF 241.5 Hz), 135.2 (d, p-CF, JCF
251.5 Hz), 127.0 (C5Me5), 61.5 (Ti–Me), 10.9 (C5Me5); 19F NMR (CD2Cl2,
223 K), d 2161.4 (m, 2 F, o-F), 2167.0 (m, 2 F, m-F), 2171.3 (t, 1 F,
p-F).
1
(h-C5Me5)TiMe(C6F5)(m-Me)B(C6F5)3 2. H NMR (CD2Cl2, 223 K), d
2.61 (d, 3 H, Ti–Me, JHF 3.1), 2.10 (s, 15 H, C5Me5), 1.36 (br s, 3 H, m-Me);
13C{1H} (CD2Cl2, 223 K), d 138.2 (C5Me5), 109.9 (Ti–Me), 13.6 (C5Me5);
19F (CD2Cl2, 223 K), d 2118.6 (m, 1 F, o-F of Ti–C6F5), 2124.3 (m, 1 F,
o-F of Ti–C6F5), 2135.1 (m, 6 F, o-F of B–C6F5), 2150.1 (t, 1 F, p-F of Ti–
C6F5), 2160.3 (m, 1 F, m-F of Ti–C6F5), 2160.8 (t, 3 F, p-F of B–C6F5),
2161.7 (m, 1 F, m-F of Ti–C6F5), 2166.0 (m, 6 F m-F of B–C6F5).
(h-C5Me5)TiMe(OC6F5)(m-Me)B(C6F5)3 3. 1H NMR (CD2Cl2, 223 K), d
2.04 (s, 15 H, C5Me5), 1.89 (s, 3 H, Ti–Me), 0.62 (br s, 3 H, m-Me); 13C{1H}
(CD2Cl2, 223 K), d 134.3 (C5Me5), 82.2 (Ti–Me), 12.2 (C5Me5); 19F
(CD2Cl2, 223 K), d 2135.4 (m, 6 F, o-F of B–C6F5), 2159.7 (m, 2 F, o-F
of Ti–OC6F5), 2160.9 (t, 3 F, p-F of B–C6F5), 2164.5 (m, 2 F, m-F of Ti–
OC6F5), 2165.0 (m, 2 F, m-F of Ti–OC6F5), 2166.0 (m, 6 F, m-F of
B–C6F5).
The solution behaviour observed for 4 was most unexpected.
The methyl abstraction reaction of (h-C5Me5)TiMe(OC6F5)2
with 1 equiv. of B(C6F5)3 in CD2Cl2 was monitored by 1H and
19F NMR spectroscopy in the temperature range 223–298 K,
and it was found that the 1H and 19F spectra at 223 K exhibited
resonances attributable only to the solvent separated species of
4, [(h-C5Me5)Ti(OC6F5)2]+ and [BMe(C6F5)3]2; none were
attributable to coordinated borate as in 1–3. Remarkably,
warming the NMR solution of 4 resulted in the reversible
reappearance of the resonances of the neutral precursor
(h-C5Me5)TiMe(OC6F5)2, and at 263 K there was a substantial
amount of both species present. Spin saturation transfer and
variable-temperature experiments showed them to be in equilib-
rium, with DH = 21.25 ± 0.1 kJ mol21, DS = 246 ± 4
J K21 mol21 for conversion to the non-ionic species. The ability
of 4 to engage in Ti–Me/B–Me exchange stands in contrast to
1–3 and even to methylzirconocene systems,4a–d for which
variable-temperature NMR studies imply similar exchange
but not the major shift in equilibrium noted here. Since
[(h-C5Me5)Ti(OC6F5)2]+ is expected to be a relatively strong
Lewis acid, its unusual disinclination to bind the borate anion
must be attributed to steric hindrance by the three bulky ligands
on the titanium hindering close approach of the borate anion. In
4, moreover, it appears that the strong but sterically hindered
Lewis acid [(h-C5Me5)Ti(OC6F5)2]+ effectively competes with
B(C6F5)3 for possession of the methyl group, presumably via a
transient methyl bridged species although none was detected in
the spin saturation experiments. An alternative structure for 4
such as {[(h-C5H5)Ti(OC6F5)(m-OC6F5)]2}2+ seems unlikely
since (a) the pentafluorophenoxy groups are equivalent in the
19F NMR spectrum and (b) 3 clearly does not contain such a m-
OC6F5 group.
[(h-C5Me5)Ti(OC6F5)2][BMe(C6F5)3] 4. 1H NMR (CD2Cl2, 223 K), d
2.17 (s, 15 H, C5Me5), 0.37 (br s, 3 H, B–Me); 13C{1H} NMR (CD2Cl2, 223
K), d 139.3 (C5Me5), 12.3 (C5Me5), 19F NMR (CD2Cl2, 223 K), d 2133.7
(m, 6 F, o-F of B–C6F5), 2159.2 (m, 4 F, o-F of O–C6F5), 2165.1 (t, 3 F,
p-F of B–C6F5), 2163.5 (m, 4 F, m-F of O–C6F5), 2162.4 (t, 2 F, p-F of
O–C6F5), 2168.4 (m, 6 F, m-F of B–C6F5).
References
1 P. C. Mo¨hring and N. J. Coville, J. Organomet. Chem., 1994, 479, 1;
V. K. Gupta, S. Satish and I. S. Bhardwaj, J. Macromol. Sci., 1994, C34,
439; H. H. Brintzinger, D. Fischer, R. Mu¨lhaupt, B. Rieger and
R. M. Waymouth, Angew. Chem., Int. Ed. Engl., 1995, 34, 1143;
M. Bochmann, J. Chem. Soc., Dalton Trans., 1996, 255. For recent
theoretical considerations at the density functional level, see T. K. Woo,
L. Fan and T. Ziegler, Organometallics, 1994, 13, 2252.
2 For recent references, see: C. Pellecchia, D. Pappalardo, L. Oliva and
A. Zambelli, J. Am. Chem. Soc., 1995, 117, 6593; A. Grassi,
C. Pellecchia, L. Oliva and F. Laschi, Macromol. Chem. Phys., 1995,
196, 1093; A. Grassi, A. Zambelli and L. Oliva, Organometallics, 1996,
15, 480; P. Foster, J. C. W. Chien and M. D. Rausch, Organometallics,
1996, 15, 2404; J. C. Flores, J. S. Wood, J. C. W. Chien and
M. D. Rausch, Organometallics, 1996, 15, 4944; J. C. Flores,
J. C. W. Chien and M. D. Rausch, Macromolecules, 1996, 29, 8030.
3 (a) Q. Wang, R. Quyoum, D. J. Gillis, M.-J. Tudoret, D. Jeremic,
B. K. Hunter and M. C. Baird, Organometallics, 1996, 15, 693 and
references therein; (b) Q. Wang, R. Quyoum, D. J. Gillis, D. Jeremic and
M. C. Baird, J. Organomet. Chem., 1997, 527, 7.
4 (a) X. Yang, C. L. Stern and T. J. Marks, J. Am. Chem. Soc., 1991, 113,
3623; (b) X. Yang, C. L. Stern and T. J. Marks, J. Am. Chem. Soc., 1994,
116, 10015; (c) P. A. Deck and T. J. Marks, J. Am. Chem. Soc., 1995, 117,
6128; (d) M. A. Giardello, M. S. Eisen, C. L. Stern and T. J. Marks, J. Am.
Chem. Soc., 1995, 117, 12114; (e) A. R. Siedle and R. A. Newmark,
J. Organomet. Chem., 1995, 497, 119; (f) D. E. Richardson, N. G.
Alameddin, M. F. Ryan, T. Hayes, J. R. Eyler and A. R. Siedle, J. Am.
Chem. Soc., 1996, 118, 11244.
We thank the Natural Sciences and Engineering Research
Council of Canada (Research and Strategic Grants to M. C. B.
and Graduate Scholarship to S. W. E.) and Alcan (Graduate
Scholarship to S. W. E.) for financial support.
5 N. Piccolrovazzi, P. Pino, G. Consiglio, A. Sironi and M. Moret,
Organometallics, 1990, 9, 3098; I.-M, Lee, W. J. Gauthier, J. M. Ball,
I. Bhagavathi and S. Collins, Organometallics, 1992, 11, 2115.
6 M. Mena, P. Royo, R. Serrano, M. A. Pellinghelli and A. Tiripicchio,
Organometallics, 1989, 8, 476; A. Mart´ın, M. Mena, M. A. Pellinghelli,
P. Royo, R. Serrano and A. Tiripicchio, J. Chem. Soc., Dalton Trans.,
1993, 2117.
7 J. Sandstrom, Dynamic NMR Spectroscopy, Academic Press, New York,
1982, pp. 77–92.
8 See for example, Y.-X. Chen, C. L. Stern, S. Yang and T. J. Marks, J. Am.
Chem. Soc., 1996, 118, 12451.
Footnotes
* E-mail: bairdmc@qucdn.queensu.ca
† Reactions of the compounds (h-C5Me5)TiCl2Me6 and (h-C5Me5)-
TiMe2Cl6 with appropriate amounts of LiC6F5 or LiOC6F5 in hexanes
yielded the thermally robust, yellow compounds (h-C5Me5)TiMe2(C6F5),
(h-C5Me5)TiMe2(OC6F5) and (h-C5Me5)TiMe(OC6F5)2, all of which have
been fully and satisfactorily characterized by elemental analyses and
spectroscopic methods.
(h-C5Me5)TiMe2(C6F5). 1H NMR (CDCl3, 298 K), d 1.98 (s, 15 H,
C5Me5), 1.41 (t, 6 H, Ti–Me, JHF 2.0); 13C{1H} NMR (CDCl3, 298 K); d
127.0 (C5Me5), 80.0 (t, Ti–Me, JCF 3.3 Hz), 12.4 (C5Me5); 19F NMR (C6D6,
298 K, ref. CFCl3), d 2121.4 (m, 2 F, o-F), 2155.6 (t, 1 F, p-F), 2163.0 (m,
2 F, m-F).
Received in Bloomington, IN, USA, 10th January 1997; Com.
7/00232G
832
Chem. Commun., 1997