R
SYNTHETIC COMMUNICATIONSV
9
[8] Xie, K.; Liu, Y.-C.; Cui, Y.; Wang, J.-G.; Fu, Y.; Mak, T. N-Methyl-(R)-3-(tert-Butyl)-
Sulfinyl-1,4-Dihydropyridine: A Novel NADH Model Compound. Molecules. 2007, 12,
[9] Lavilla, R. Recent Developments in the Chemistry of Dihydropyridines. J. Chem. Soc,
[10] Stout, D. M.; Meyers, A. I. Recent Advances in the Chemistry of Dihydropyridines. Chem.
[11] Saini, A. K. S.; Sandhu, J. S. Hantzsch Reaction: Recent Advances in Hantzsch 1,4-
Dihydropyridines. J. Sci. Ind. Res. 2008, 67, 95–111.
[12] Mao, Y.-Z.; Jin, M.-Z.; Liu, Z.-L.; Wu, L.-M. Oxidative Reactivity of S-Nitrosoglutathione
with Hantzsch 1,4-Dihydropyridine. Org. Lett. 2000, 2, 741–742. DOI: 10.1021/ol990367c.
[13] Suresh, S.; Sandhu, J. S. Past, Present and Future of the Biginelli Reaction: A Critical
Perspective. ARKIVOC. 2012, 2012, 66–133.
[14] Goswami, P. One Pot Synthesis of Unsymmetrical Dihydropyridines by Green, Catalyst
Free and Environmentally Benign Protocol. Green Chem. Lett. Rev. 2008, 1, 173–177.
[15] Geirsson, J. K. F.; Johannesdottir, J. F. Convenient Synthesis of N-Benzyl-1,4-
Dihydropyridines, Cyclohexenones, and Bicyclo[3.3.1]Nonan-3-One Derivatives from 1-
[16] Kumar, S.; Idhayadhulla, A.; Nasser, A.; Selvin, J. Synthesis and Antimicrobial Activity of
a New Series 1,4-Dihydropyridine Derivatives. J. Serb. Chem. Soc. 2011, 76, 1–11. DOI:
[17] Yan, X.; Ling, F.; Zhang, Y.; Ma, C. Three-Component Functionalized Dihydropyridine
Synthesis via a Formal Inverse Electron-Demand Hetero-Diels–Alder Reaction. Org. Lett.
[18] Kaithal, A.; Chatterjee, B.; Gunanathan, C. Ruthenium-Catalyzed Regioselective 1,4-
[19] Dong, W.; Yuan, Y.; Hu, B.; Gao, X.; Gao, H.; Xie, X.; Zhang, Z. Combining Visible-
Light-Photoredox and Lewis Acid Catalysis for the Synthesis of Indolizino[1,2-b]Quinolin-
9(11H)-Ones and Irinotecan Precursor. Org. Lett. 2018, 20, 80–83. DOI: 10.1021/acs.
[20] Pourian, E.; Javanshir, S.; Dolatkhah, Z.; Molaei, S.; Maleki, A. Ultrasonic-Assisted
Preparation, Characterization, and Use of Novel Biocompatible Core/Shell
Fe3O4@GA@Isinglass in the Synthesis of 1,4-Dihydropyridine and 4H-Pyran Derivatives.
[21] Hirama, M.; Kato, Y.; Seki, C.; Nakano, H.; Takeshita, M.; Oshikiri, N.; Iyoda, M.;
Matsuyama, H. An Efficient Synthesis of Chiral Isoquinuclidines by Diels–Alder Reaction
[22] Chung, J. Y. L.; Ho, G.-J. An Improved Preparation of 2-Azabicyclo[2.2.2]Octane. Synth.
[23] Zhou, W.; Ni, C.; Chen, J.; Wang, D.; Tong, X. Enantioselective Synthesis of 4H-Pyran via
Amine-Catalyzed Formal (3 þ 3) Annulation of Delta-Acetoxy Allenoate. Org. Lett. 2017,
[24] Ni, C.; Tong, X. Amine-Catalyzed Asymmetric (3 þ 3) Annulations of b0-Acetoxy
Allenoates: Enantioselective Synthesis of 4H-Pyrans. J. Am. Chem. Soc. 2016, 138,
[25] Zhang, S.; Luo, Y.-C.; Hu, X.-Q.; Wang, Z.-Y.; Liang, Y.-M.; Xu, P.-F. Enantioselective
Amine-Catalyzed [4 þ 2] Annulations of Allene Ketones and 2,3-Dioxopyrrolidine
Derivatives: Synthesis of 4H-Pyran Derivatives. J. Org. Chem. 2015, 80, 7288–7294. DOI:
[26] Randive, N. A.; Kumar, V.; Nair, V. A. A Facile Approach to Substituted Acrylates by
Regioselective and Stereoselective Addition of Thiols and Amines to an Alkynyl Ester in