Page 9 of 11
Journal of the American Chemical Society
Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev. 2005, 105,
Res. 2015, 48, 1756–1766. (e) Zhang, M.; Sun, S.ꢀZ.; Wang, H.ꢀL.;
Wang, M.ꢀM.; Dai, H.ꢀX. Synthesis 2016, 48, 4381–4399.
2329–2363. (c) Sigman, M. S.; Jensen, D. R. Acc. Chem. Res. 2006,
39, 221–229. (d) Boisvert, L.; Goldberg, K. I. Acc. Chem. Res. 2012,
45, 899–910. (e) Wu, W.; Jiang, H. Acc. Chem. Res. 2012, 45, 1736–
1748. (f) Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012,
41, 3381–3430. (g) Roduner, E.; Kaim, W.; Sarkar, B.; Urlacher, V.
B.; Pleiss, J.; Gläer, R.; Einicke, W.ꢀD.; Sprenger, G. A.; Beifuβ, U.;
Klemm, E.; Liebner, C.; Hieronymus, H.; Hsu, S.ꢀF.; Plietker, B.;
Laschat, S. ChemCatChem 2013, 5, 82–112. (h) Wang, D.; Weinꢀ
stein, A. B.; White, P. B.; Stahl, S. S. Chem. Rev. 2018, 118, 2636–
2679.
1
2
3
4
5
6
7
8
(13) For some very recent examples on copperꢀcatalyzed aerobic oxidaꢀ
tion, see: (a) Lee, Y. E.; Cao, T.; Torruellas, C.; Kozlowski, M. C. J.
Am. Chem. Soc. 2014, 136, 6782–6785. (b) Esguerra, K. V. N.; Fall,
Y.; Petitjean, L. P.; Lumb, J.ꢀP. J. Am. Chem. Soc. 2014, 136, 7662–
7668. (c) Sasano, Y.; Nagasawa, S.; Yamazaki, M.; Shibuya, M.;
Park, J.; Iwabuchi, Y. Angew. Chem., Int. Ed. 2014, 53, 3236–3240.
(d) Xu, C.; Zhang, L.; Luo, S. Angew. Chem., Int. Ed. 2014, 53,
4149–415. (e) Xu, B.; Lumb, J.ꢀP.; Arndtsen, B. A. Angew. Chem.,
Int. Ed. 2015, 54, 4208–4211. (f) McCann, S. D.; Stahl, S. S. J. Am.
Chem. Soc. 2016, 138, 199–206. (g) Liu, M.; Li, C.ꢀJ. Angew. Chem.,
Int. Ed. 2016, 55, 10806–10810. (h) Xu, B.; Hartigan, E. M.; Feula,
G.; Huang, Z.; Lumb, J.ꢀP.; Arndtsen, B. A. Angew. Chem., Int. Ed.
2016, 55, 15802–15806. (i) Iron, M. A.; Szpilman, A. M. Chem. Eur.
J. 2017, 23, 1368–1378.
(14) (a) Jones, A. B. In Comprehensive Organic Synthesis; Trost, B. M.,
Fleming, I.; Ley, S. V., Ed.; Pergamon Press Ltd.: Oxford, 1991; Vol.
7, pp 151–191. (b) Chen, B.ꢀC.; Zhou, P.; Davis, F. A.; Ciganek, E.
In Organic Reactions; Overman L. E., Ed.; John Wiley & Sons Inc.:
New York, 2003; Vol. 62, pp 1–356.
(15) (a) Adam, W.; Metz, M.; Prechtl, F.; Renz, M. Synthesis, 1994, 563–
566. (b) ElꢀQisairi, A. K.; Qaseer, H. A. J. Organomet. Chem. 2002,
659, 50–55. (c) Ye, L.ꢀW.; Sun, X.ꢀL.; Wang, Q.ꢀG.; Tang, Y. Anꢀ
gew. Chem., Int. Ed. 2007, 46, 5951–5954. (d) Lubin, H.; Tessier, A.;
Chaume, G.; Pytkowicz, J.; Brigaud, T. Org. Lett. 2010, 12, 1496–
1499. (e) Liang, Y.ꢀF.; Jiao, N. Angew. Chem., Int. Ed. 2014, 53,
548–552. (f) Chaudhari, M. B.; Sutar, Y.; Malpathak, S.; Hazra, A.;
Gnanaprakasam, B. Org. Lett. 2017, 19, 3628–3631.
(16) (a) Gardner, J. N.; Carlon, F. E.; Gnoj, O. J. Org. Chem. 1968, 33,
3294–3297. (b) Kim, M. Y.; Starrett, J. E., Jr.; Weinreb, S. M. J.
Org. Chem. 1981, 46, 5383–5389. (c) Williams, R. M.; Armstrong,
R. W.; Dung, J.ꢀS. J. Am. Chem. Soc. 1985, 107, 3253–3266. (d)
Hartwig, W.; Born, L. J. Org. Chem. 1987, 52, 4352–4358. (e)
Paquette, L. A.; DeRussy, D. T.; Pegg, N. A.; Taylor, R. T.; Zyꢀ
dowsky, T. M. J. Org. Chem. 1989, 54, 4576–4581.
(17) (a) Masui, M.; Ando, A.; Shioiri, T. Tetrahedron Lett. 1988, 29,
2835–2838. (b) Dehmlow, E. V.; Wagner, S.; Müller, M. Tetraheꢀ
dron 1999, 55, 6335–6346. (c) Dehmlow, E. V.; Düttmann, S.;
Neumann, B.; Stammler, H.ꢀG. Eur. J. Org. Chem. 2002, 2087–2093.
(d) Sano, D.; Nagata, K.; Itoh, T. Org. Lett. 2008, 10, 1593–1595. (e)
Yang, Y.; Moinodeen, F.; Chin, W.; Ma, T.; Jiang, Z.; Tan, C.ꢀH.
Org. Lett. 2012, 14, 4762–4765. (f) Sim, S.ꢀB. D.; Wang, M.; Zhao,
Y. ACS Catal. 2015, 5, 3609–3612.
(6) For some very recent examples on transition metalꢀcatalyzed aerobic
oxidation, see: (a) Neu, H. M.; Jung, J.; Baglia, R. A.; Siegler, M. A.;
Ohkubo, K.; Fukuzumi, S.; Goldberg, D. P. J. Am. Chem. Soc. 2015,
137, 4614–4617. (b) GonzalezꢀdeꢀCastro, A.; Xiao, J. J. Am. Chem.
Soc. 2015, 137, 8206–8218. (c) McCann, S. D.; Stahl, S. S. J. Am.
Chem. Soc. 2016, 138, 199–206. (d) Das, P.; Saha, D.; Saha, D.;
Guin, J. ACS Catal. 2016, 6, 6050–6054. (e) Pattillo, C. C.; Stramꢀ
beanu, I. I.; Calleja, P.; Vermeulen, N. A.; Mizuno, T.; White, M. C.
J. Am. Chem. Soc. 2016, 138, 1265–1272. (f) Anson, C. W.; Ghosh,
S.; HammesꢀSchiffer, S.; Stahl, S. S. J. Am. Chem. Soc. 2016, 138,
4186–4193. (g) White, P. B.; Jaworski, J. N.; Fry, C. G.; Dolinar, B.
S.; Guzei, I. A.; Stahl, S. S. J. Am. Chem. Soc. 2016, 138, 4869–
4880. (h) Jiang, X.; Zhang, J.; Ma, S. J. Am. Chem. Soc. 2016, 138,
8344–9347. (i) Ingram, A. J.; Walker, K. L.; Zare, R. N.; Waymouth,
R. M. J. Am. Chem. Soc. 2015, 137, 13632–13646. (j) Sheet, D.;
Paine, T. K. Chem. Sci. 2016, 7, 5322–5331. (k) Ding, W.; Lu, L.ꢀQ.;
Zhou, Q.ꢀQ.; Wei, Y.; Chen, J.ꢀR.; Xiao, W.ꢀJ. J. Am. Chem. Soc.
2017, 139, 63–66. (l) Su, H.; Zhang, K.ꢀX.; Zhang, B.; Wang, H.ꢀH.;
Yu, Q.ꢀY.; Li, X.ꢀH.; Antonietti, M.; Chen, J.ꢀS. J. Am. Chem. Soc.
2017, 139, 811–818. (m) Wenzel, M. N.; Owens, P. K.; Bray, J. T.
W.; Lynam, J. M.; Aguiar, P. M.; Reed, C.; Lee, J. D.; Hamilton, J.
F.; Whitwood, A. C.; Fairlamb, I. J. S. J. Am. Chem. Soc. 2017, 139,
1177–1190. (n) Yu, H.; Ru, S.; Dai, G.; Zhai, Y.; Lin, H.; Han, S.;
Wei, Y. Angew. Chem., Int. Ed. 2017, 56, 3867–3871. (o) Gaser, E.;
Kozuch, S.; Pappo, D. Angew. Chem., Int. Ed. 2017, 56, 5912–5915.
(7) For some recent examples on construction of heterocycles through
transition metalꢀcatalyzed aerobic oxidation, see: (a) Chiba, S.;
Zhang, L.; Lee, J.ꢀY. J. Am. Chem. Soc. 2010, 132, 7266–7267. (b)
Wang, H.; Wang, Y.; Liang, D.; Liu, L.; Zhang, J.; Zhu, Q. Angew.
Chem., Int. Ed. 2011, 50, 5678–5681. (c) Toh, K. K.; Wang, Y.ꢀF.;
Ng, E. P. J.; Chiba, S. J. Am. Chem. Soc. 2011, 133, 13942–13945.
(d) Xu, Z.; Zhang, C.; Jiao, N. Angew. Chem., Int. Ed. 2012, 51,
11367–11370. (e) Wendlandt, A. E.; Stahl, S. S. J. Am. Chem. Soc.
2014, 136, 506–512. (f) Cheng, H.ꢀG.; Miguélez, J.; Miyamura, H.;
Yoo, W.ꢀJ.; Kobayashi, S. Chem. Sci. 2017, 8, 1356–1359.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(18) Williamson, K. S.; Michaelis, D. J.; Yoon, T. P. Chem. Rev. 2014,
114, 8016–8036.
(19) For some selected examples on diastereoselective oxidation of oxaꢀ
zolidinoneꢀbased chiral amide enolates by oxaziridines, see: (a)
Monma, S.; Sunazuka, T.; Nagai, K.; Arai, T.; Shiomi, K.; Matsui,
R.; Ōmura, S. Org. Lett. 2006, 8, 5601–5604. (b) Pichlmair, S.; de
Lera Ruiz, M.; Vilotijevic I.; Paquette, L. A. Tetrahedron 2006, 62,
5791–5802. (c) Zhang, L.; Zhu, L.; Yang, J.; Luo, J.; Hong, R. J.
Org. Chem. 2016, 81, 3890–3900.
(20) For some selected examples on catalytic asymmetric oxidation by
oxaziridines, see: (a) Toullec, P. Y.; Bonaccorsi, C.; Mezzetti, A.;
Togni, A. P. Natl. Acad. Sci. U. S. A. 2004, 101, 5810–5814. (b)
Ishimaru, T.; Shibata, N.; Nagai, J.; Nakamura, S.; Toru, T.;
Kanemasa, S. J. Am. Chem. Soc. 2006, 128, 16488–16489. (c) Redꢀ
dy, D. S.; Shibata, N.; Nagai, J.; Nakamura, S.; Toru, T. Angew.
Chem., Int. Ed. 2009, 48, 803–806. (d) Smith, A. M. R.; Rzepa, H. S.;
White, A. J. P.; Billen, D.; Hii, K. K. J. Org. Chem. 2010, 75, 3085–
3096. (e) Jiang, J.ꢀJ.; Huang, J.; Wang, D.; Zhao, M.ꢀX.; Wang, F.ꢀJ.;
Shi, M. Tetrahedron: Asymmetry 2010, 21, 794–799. (f) Li, J.; Chen,
G.; Wang, Z.; Zhang, R.; Zhang, X.; Ding, K. Chem. Sci. 2011, 2,
1141–1144. (g) Takechi, S.; Kumagai, N.; Shibasaki, M. Tetraheꢀ
dron Lett. 2011, 52, 2140–2143. (h) Zou, L.; Wang, B.; Mu, H.;
Zhang, H.; Song, Y.; Qu, J. Org. Lett. 2013, 15, 3106–3109. (i) Naꢀ
ganawa, Y.; Aoyama, T.; Nishiyama, N. Org. Biomol. Chem. 2015,
13, 11499–11506.
(8) For some recent examples on catalytic oxidation under air, see: (a)
Tian, J.ꢀS.; Loh, T.ꢀP. Angew. Chem., Int. Ed. 2010, 49, 8417–8420.
(b) Li, S.; Wu, J. Org. Lett. 2011, 13, 712–715. (c) Hanson, S. K.;
Wu, R.; Silks, L. A. Org. Lett. 2011, 13, 1908–1911. (d) Su, Y.;
Zhang, L.; Jiao, N. Org. Lett. 2011, 13, 2168–2171. (e) Huang, D.;
Wang, H.; Xue, F.; Shi, Y. J. Org. Chem. 2011, 76, 7269–7274. (f)
Liu, Q.; Wu, P.; Yang, Y.; Zeng, Z.; Liu, J.; Yi, H.; Lei, A. Angew.
Chem., Int. Ed. 2012, 51, 4666–4670. (g) Huang, X.; Li, X.; Zou, M.;
Song, S.; Tang, C.; Yuan, Y.; Jiao, N. J. Am. Chem. Soc. 2014, 136,
14858–14865.
(9) Zweig, J. E.; Kim, D. E.; Newhouse, T. R. Chem. Rev. 2017, 117,
11680ꢀ11752.
(10) (a) The Chemistry of Organocopper Compounds; Rappoport, Z.,
Marek, I., Eds.; John Wiley & Sons Ltd.: Chichester, West Sussex,
2009. (b) CopperꢀCatalyzed Asymmetric Synthesis; Alexakis, A.,
Krause, N., Woodward, S., Eds.; WileyꢀVCH: Weinheim, 2014. (c)
Shang, M.; Sun, S.ꢀZ.; Wang, H.ꢀL.; Wang, M.ꢀM.; Dai, H.ꢀX. Synꢀ
thesis 2016, 48, 4381–4399.
(11) (a) Rosenzweig, A. C.; Sazinksy, M. H. Curr. Opin. Struct. Biol.
2006, 16, 729–735. (b) Chufán, E. E.; Puiu, S. C.; Karlin, K. D. Acc.
Chem. Res. 2007, 40, 563–572. (c) Que, L., Jr; Tolman , W. B. Naꢀ
ture 2008, 455, 333–340. (d) Himes, R. A.; Karlin, K. D. Curr. Opin.
Chem. Biol. 2009, 13, 119–131.
(12) For some recent reviews on copperꢀmediated or catalyzed aerobic
oxidation, see: (a) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Anꢀ
gew. Chem., Int. Ed. 2011, 50, 11062–11087. (b) Allen, S. E.; Walꢀ
voord, R. R.; PadillaꢀSalinas, R.; Kozlowski, M. C. Chem. Rev. 2013,
113, 6234–6458. (c) Ryland, B. L.; Stahl, S. S. Angew. Chem., Int.
Ed. 2014, 53, 8824–8838. (d) McCann, S. D.; Stahl, S. S. Acc. Chem.
(21) (a) Vedejs, E. J. Am. Chem. Soc. 1974, 96, 5944–5946. (b) Vedejs,
E.; Engler, D. A.; Telschow, J. E. J. Org. Chem. 1978, 43, 188–196.
(c) Hara, O.; Takizawa, J.; Yamatake, T.; Makino, K.; Hamada, Y.
Tetrahedron Lett. 1999, 40, 7787–7790. (d) Makino, K.; Shintani, K.;
Yamatake, T.; Hara, O.; Hatano, K.; Hamada, Y. Tetrahedron 2002,
58, 9737–9740.
ACS Paragon Plus Environment