Journal of the American Chemical Society
Page 4 of 6
1
2
3
4
5
6
7
8
9
K.; Shirasago, Y.; Suzuki, T.; Aizaki, H.: Hanada, K.; Wakita, T.; Nishijima,
M.; Fukasawa, M. J. Virol. 2015, 89, 2220.
furnished 3, which possess the same carbon numbers and C5,6,7-
stereochemistry as the core of 1. Then, selective photoactivation
of the 1,2-diketone moiety of 3, followed by the oxidative C–C
bond cleavage reaction regio- and stereoselectively transferred the
-hydroxyacyl group at the C4-position of 2, thereby constructing
the contiguous fully-substituted C4,5-carbons. Subsequent stere-
oselective reduction of the C3-ketone, transacetalization into the
characteristic 2,8-dioxabicyclo[3.2.1]octane core, and attachments
of the C4’O-acetyl group and the C6O-acyl chain converted 2 to 1.
Among the variety of selective reactions, a special feature of the
present synthesis is the Norrish-Yang cyclization from 3 to 13. The
strategically placed electron-withdrawing Bz group decreased the
reactivity of the proximal C6–H, permitting selective functionali-
zation of the electron-rich ethereal C4–H bond. Moreover, violet
LED irradiation under the microflow system improved the effi-
ciency and scalability of the transformation without any additional
reagents. Hence, the present photochemical C(sp3)–H functionali-
zation allowed access to the unique molecular structure that are dif-
ficult to be obtained by conventional polar reactions, and thus sim-
plified the synthetic scheme to 1. The substrate design principle
employed here for site- and stereoselective C(sp3)-H functionaliza-
tion would have broad applications in the total synthesis of other
structurally complex natural products and pharmaceuticals with
multiple oxygen functionalities.
7. Zaragozic acid C (1): (a) Carreira, E. M.; Du Bois, J. J. Am. Chem. Soc.
1995, 117, 8106. (b) Evans, D. A.; Barrow, J. C.; Leighton, J. L.; Ro-
bichaud, A. J.; Sefkow, M. J. Am. Chem. Soc. 1994, 116, 12111. (c) Arm-
strong, A.; Barsanti, P. A.; Jones, L. H.; Ahmed, G. J. Org. Chem. 2000,
65, 7020. (d) Nakamura, S.; Sato, H.; Hirata, Y.; Watanabe, N.; Hash-
imoto, S. Tetrahedron 2005, 61, 11078. (e) Hirata, Y.; Nakamura, S.;
Watanabe, N.; Kataoka, O.; Kurosaki, T.; Anada, M.; Kitagaki, S.; Shiro,
M.; Hashimoto, S. Chem. Eur. J. 2006, 12, 8898. (f) Nicewicz, D. A.; Sat-
terfield, A. D.; Schmitt, D. C.; Johnson, J. S. J. Am. Chem. Soc. 2008, 130,
17281. Zaragozic acid A: (g) Nicolaou, K. C.; Yue, E. W.; La Greca, S.;
Nadin, A.; Yang, Z.; Leresche, J. E.; Tsuri, T.; Naniwa, Y.; De Riccardis,
F. Chem. Eur. J. 1995, 1, 467. (h) Caron, S.; Stoermer, D.; Mapp, A. K.;
Heathcock, C. H. J. Org. Chem. 1996, 61, 9126. (i) Tomooka, K.; Kiku-
chi, M.; Igawa, K.; Suzuki, M.; Keong, P.-H.; Nakai, T. Angew. Chem.,
Int. Ed. 2000, 39, 4502. Zaragozic acid D: (j) Wang, Y.; Metz, P. Chem.
Eur. J. 2011, 17, 3335.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
8. Formal total synthesis of zaragozic acid A or C: (a) Freeman-Cook, K.
D.; Halcomb, R. L. J. Org. Chem. 2000, 65, 6153. (b) Bunte, J. O.; Cuz-
zupe, A. N.; Daly, A. M.; Rizzacasa, M. A. Angew. Chem., Int. Ed. 2006,
45, 6376. See also reference 7j.
9. For reviews on the synthesis of zaragozic acids, see: (a) Nadin, A.; Ni-
colaou, K. C. Angew. Chem., Int. Ed. Engl. 1996, 35, 1622. (b) Armstrong,
A.; Blench, T. J. Tetrahedron 2002, 58, 9321.
10. For recent reviews on the application of C(sp3)–H functionalization for
natural product synthesis, see: (a) Newhouse, T.; Baran, P. S. Angew.
Chem., Int. Ed. 2011, 50, 3362. (b) Gutekunst, W. R.; Baran, P. S. Chem.
Soc. Rev. 2011, 40, 1976. (c) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K.
Angew. Chem., Int. Ed. 2012, 51, 8960.
ASSOCIATED CONTENT
Supporting Information
Characterization data for all new compounds, and experimental
procedures. This material is available free of charge via the Internet
11. (a) Kamijo, S.; Hoshikawa, T.; Inoue, M. Tetrahedron Lett. 2010, 51,
872. (b) Yoshioka, S.; Nagatomo, M.; Inoue, M. Org. Lett. 2015, 17, 90.
12. (a) Yang, N. C.; Yang, D.-D. H. J. Am. Chem. Soc. 1958, 80, 2913. (b)
Urry, W. H.; Trecker, D. J. J. Am. Chem. Soc. 1962, 84, 118.
13. For recent applications of the Norrish-Yang photocyclization, see: (a)
Herrera, A. J.; Rondón, M.; Suárez, E. J. Org. Chem. 2008, 73, 3384. (b)
Renata, H.; Zhou, Q.; Baran, P. S. Science 2013, 339, 59. For reviews, see:
(c) Bach, T.; Hehn, J. P. Angew. Chem., Int. Ed. 2011, 50, 1000. (d) Chen,
C. Org. Biomol. Chem. 2016, 14, 8641. (e) Kärkäs, M. D.; Porco, J. A. Jr.;
Stephenson, C. R. J. Chem Rev. 2016, 116, 9683. (f) Ravelli, D.; Protti, S.;
Fagnoni, M. Chem Rev. 2016, 116, 9850.
14. See Supporting Information for the preparation of A, B, D and G.
15. Garegg, P. J.; Hultberg, H.; Wallin, S. Carbohydr. Res. 1982, 108, 97.
16. Shibuya, M.; Tomizawa, M.; Suzuki, I.; Iwabuchi, Y. J. Am. Chem.
Soc. 2006, 128, 8412.
17. (a) Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J.
Org. Chem. 1981, 46, 3936. (b) Zibuck, R.; Seebach, D. Helv. Chim. Acta.
1988, 71, 237.
18. (a) Fukuyama, T.; Rahman, M. T.; Sato, M.; Ryu, I. Synlett 2008, 151.
For reviews, see: (b) Sugimoto, A.; Fukuyama, T.; Sumino, Y.; Takagi,
M.; Ryu, I. Tetrahedron 2009, 65, 1593. (c) Ley, S. V.; Fitzpatrick, D. E.;
Myers, R. M.; Battilocchio, C.; Ingham, R. J. Angew. Chem., Int. Ed.
2015, 54, 10122.
19. Norrish-type I fragmentation proceeds from the cyclobutanone struc-
ture. (a) Norrish, R. G. W. Trans. Faraday Soc. 1937, 33, 1521. (b) Yates,
P. Pure. Appl. Chem. 1968, 16, 93. (c) Coyle, J. D. Chem. Soc. Rev. 1972,
1, 465.
20. -Hydrogen abstraction at C7 or C9 by the activated C10-ketone would
be inhibited, because the reaction requires large conformational reorganiza-
tion.
21. Mori, Y.; Huhara, M.; Takeuchi, A.; Suzuki, M. Tetrahedron Lett.
1988, 29, 5419.
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This research was financially supported by the Funding Program
for a Grant-in-Aid for Scientific Research (A) (26253003) to M.I.,
and a Grant-in-Aid for Scientific Research (C) (16K08156) to M.N.
REFERENCES
1. Dufresne, C.; Wilson, K. E.; Zink, D.; Smith, J.; Bergstrom, J. D.;
Kurtz, M.; Rew, D.; Nallin, M.; Jenkins, R.; Bartizal, K.; Trainor, C.;
Bills, G.; Meinz, M.; Huang, L.; Onishi, J.; Milligan, J.; Mojena, M.; Pe-
laez, F. Tetrahedron 1992, 48, 10221.
2. Sidebottom, P. J.; Highcock, R. M.; Lane, S. J.; Procopiou, P. A.; Wat-
son N. S. J. Antibiot. 1992, 45, 648.
3. (a) Dawson, M. J.; Farthing, J. E.; Marshall, P. S.; Middleton, R. F.;
O’Neill, M. J.; Shuttleworth, A.; Stylli, C.; Tait, R. M.; Taylor, P. M.;
Wildman, H. G.; Buss, A. D.; Langley, D.; Hayes, M. V. J. Antibiot. 1992,
45, 639. (b) Bergstrom, J. D.; Kurtz, M. M.; Rew, D. J.; Amend, A. M.;
Karkas, J. D.; Bostedor, R. G.; Bansal, V. S.; Dufresne, C.; VanMiddles-
worth, F. L.; Hensens, O. D. Proc. Natl. Acad. Sci. USA 1993, 90, 80. (c)
Hasumi, K.; Tachikawa, K.; Sakai, K.; Murakawa, S.; Yoshikawa, N.; Ku-
mazawa, S.; Endo, A. J. Antibiot. 1993, 46, 689.
4. Gibbs, J. B.; Pompliano, D. L.; Mosser, S. D.; Rands, E.; Lingham, R.
B.; Singh, S. B.; Scolnick, E. M.; Kohl, N. E.; Oliff, A. J. Biol. Chem.
1993, 268, 7617.
5. (a) Bate, C.; Salmona, M.; Diomede, L.; Williams, A. J. Biol. Chem. 2004,
279, 14983. (b) Bate, C.; Williams, A. Neuropharmacol. 2007, 53, 222.
6. (a) Rothwell, C.; LeBreton, A.; Ng, C. Y.; Lim, J. Y. H.; Liu, W.; Vasude-
van, S.; Labow, M.; Gu, F.; Gaither, L. A. Virology 2009, 389, 8. (b) Saito,
22. When the reduction was conducted without LiI, 14 was obtained in only
23% yield.
23. Shibuya, M.; Sato, T.; Tomizawa, M. Iwabuchi, Y. Chem. Commun.
2009, 1739.
24. Acidic transacetalization of 17 removed the TBDPS group, leading to
the undesired ring system. See Supporting Information for details on the
acetalization.
25. Eckenberg, P.; Groth, U.; Huhn, T.; Richter, N.; Schmeck, C. Tetrahe-
dron 1993, 49, 1619.
26. Mathias, L. J. Synthesis 1979, 561.
ACS Paragon Plus Environment