Organic Letters
Letter
(2) (a) Roskamp, E. J.; Pedersen, S. F. J. Am. Chem. Soc. 1987, 109,
6551. (b) Takai, K.; Ishiyama, T.; Yasue, H.; Nobunaka, T.; Itoh, M.;
Oshiki, T.; Mashima, K.; Tani, K. Organometallics 1998, 17, 5128.
(c) Su, W.; Yang, B. Synth. Commun. 2003, 33, 2613. (d) Fan, G.; Liu,
Y. Tetrahedron Lett. 2012, 53, 5084. (e) Loose, F.; Schmidtmann, M.;
Saak, W.; Beckhaus, R. Eur. J. Inorg. Chem. 2015, 2015, 5171.
(f) Umeda, R.; Ninomiya, M.; Nishino, T.; Kishida, M.; Toiya, S.;
Saito, T.; Nishiyama, Y.; Sonoda, N. Tetrahedron 2015, 71, 1287.
(3) (a) Reich, B. J. E.; Justice, A. K.; Beckstead, B. T.; Reibenspies, J.
H.; Miller, S. A. J. Org. Chem. 2004, 69, 1357. (b) Ogle, J. W.; Zhang,
J.; Reibenspies, J. H.; Abboud, K. A.; Miller, S. A. Org. Lett. 2008, 10,
3677.
(4) (a) Kobayashi, S.; Yazaki, R.; Seki, K.; Yamashita, Y. Angew.
Chem., Int. Ed. 2008, 47, 5613. (b) Yamashita, Y.; Guo, X.-X.;
Takashita, R.; Kobayashi, S. J. Am. Chem. Soc. 2010, 132, 3262.
(c) Chen, Y.-J.; Seki, K.; Yamashita, Y.; Kobayashi, S. J. Am. Chem.
Soc. 2010, 132, 3244. (d) Li, M.; Berritt, S.; Walsh, P. J. Org. Lett.
2014, 16, 4312. (e) Fernandez-Salas, J. A.; Marelli, E.; Nolan, S. P.
Chem. Sci. 2015, 6, 4973.
(5) (a) Yeagley, A. A.; Chruma, J. J. Org. Lett. 2007, 9, 2879.
(b) Yeagley, A. A.; Lowder, M. A.; Chruma, J. J. Org. Lett. 2009, 11,
4022. (c) Liu, X.; Gao, A.; Ding, L.; Xu, J.; Zhao, B. Org. Lett. 2014,
16, 2118. (d) Tang, S.; Park, J. Y.; Yeagley, A. A.; Sabat, M.; Chruma,
J. J. Org. Lett. 2015, 17, 2042.
(6) (a) Liu, L.; Zhou, W.; Chruma, J.; Breslow, R. J. Am. Chem. Soc.
2004, 126, 8136. (b) Xiao, X.; Xie, Y.; Su, C.; Liu, M.; Shi, Y. J. Am.
Chem. Soc. 2011, 133, 12914. (c) Qian, X.; Ji, P.; He, C.;
Zirimwabagabo, J. O.; Archibald, M. M.; Yeagley, A. A.; Chruma, J.
J. Org. Lett. 2014, 16, 5228. (d) Xu, J.; Chen, J.; Yang, Q.; Ding, L.;
Liu, X.; Xu, D.; Zhao, B. Adv. Synth. Catal. 2014, 356, 3219. (e) Li,
couplings and the imine dimerizations (Scheme 1, eqs 4 and
5). Therefore, a radical clock experiment using cyclopropane-
carboxaldehyde (2p) was conducted. Exposure of
cyclopropanecarboxaldehyde to the standard photocatalytic
coupling reaction conditions led to formation of cyclopropane-
containing 3pa in 83% isolated yield. No ring-opened
products, e.g. 3qa, were observed by H NMR spectroscopy,
indicating that the diradical coupling pathway is unlikely
(Scheme 6B).
In summary, reductive coupling of imines with aldehydes by
stoichiometric metal complexes is a synthetically valuable
transformation. To avoid the use of highly reactive metal-based
reagents, and circumvent generation of copious waste
products, we have demonstrated the photoredox catalyzed
cross-electrophile coupling of ketimines and aldehydes. Such
reactions generally proceed via radical−radical coupling
mechanisms. In contrast, we have demonstrated cross-electro-
phile coupling transformations via the nucleophilic addition
pathway with photoredox catalysis. The advantages of the
nucleophilic addition are exemplified with the cross-electro-
phile couplings between ketimines and aldehydes, which are
difficult to achieve via radical−radical coupling pathways due
to challenges associated with the generation of two different
radical species and their chemoselective coupling. We have also
demonstrated that the amino alcohol products prepared herein
are easily converted into biological fluorescent probes or
biologically active compounds by palladium catalyzed coupling
reactions. Other transformations exploiting the novel umpo-
lung reactivity of imines are currently underway in our group.
1
M.; Yucel, B.; Adrio, J.; Bellomo, A.; Walsh, P. J. Chem. Sci. 2014, 5,
̈
2383. (f) Zhu, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2014, 136, 4500.
(g) Matsumoto, M.; Harada, M.; Yamashita, Y.; Kobayashi, S. Chem.
ASSOCIATED CONTENT
* Supporting Information
■
́
Commun. 2014, 50, 13041. (h) Fernandez-Salas, J. A.; Marelli, E.;
S
Nolan, S. P. Chem. Sci. 2015, 6, 4973. (i) Xie, Y.; Pan, H.; Liu, M.;
́
Xiao, X.; Shi, Y. Chem. Soc. Rev. 2015, 44, 1740. (j) Li, M.; Gonzalez-
The Supporting Information is available free of charge on the
Esguevillas, M.; Berritt, S.; Yang, X.; Bellomo, A.; Walsh, P. J. Angew.
Chem., Int. Ed. 2016, 55, 2825. (k) Chen, P.; Yue, Z.; Zhang, J.; Lv,
X.; Wang, L.; Zhang, J. Angew. Chem., Int. Ed. 2016, 55, 13316.
(l) Guo, C. X.; Zhang, W. Z.; Zhou, H.; Zhang, N.; Lu, X. B. Chem. -
Eur. J. 2016, 22, 17156. (m) Liu, Y. E.; Lu, Z.; Li, B.; Tian, J.; Liu, F.;
Zhao, J.; Hou, C.; Li, Y.; Niu, L.; Zhao, B. J. Am. Chem. Soc. 2016,
138, 10730. (n) Daniel, P. E.; Weber, A. E.; Malcolmson, S. J. Org.
Lett. 2017, 19, 3490. (o) Su, Y. L.; Li, Y. H.; Chen, Y. G.; Han, Z. Y.
Chem. Commun. 2017, 53, 1985. (p) Li, K.; Weber, A. E.; Tseng, L.;
Malcolmson, S. J. Org. Lett. 2017, 19, 4239. (q) Feng, B.; Lu, L.-Q.;
Chen, J.-R.; Feng, G.; He, B.-Q.; Lu, B.; Xiao, W.-J. Angew. Chem., Int.
Ed. 2018, 57, 5888. (r) Tang, S.; Zhang, X.; Sun, J.; Niu, D.; Chruma,
J. J. Chem. Rev. 2018, 118, 10393.
Procedures, characterization data, and spectra for all new
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
(7) (a) Rono, L. J.; Yayla, H. G.; Wang, D. Y.; Armstrong, M. F.;
Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 17735. (b) Hager, D.;
MacMillan, D. W. J. Am. Chem. Soc. 2014, 136, 16986. (c) Uraguchi,
D.; Kinoshita, N.; Kizu, T.; Ooi, T. J. Am. Chem. Soc. 2015, 137,
13768. (d) Jeffrey, J. L.; Petronijevic, F. R.; MacMillan, D. W. J. Am.
Chem. Soc. 2015, 137, 8404. (e) Fava, E.; Millet, A.; Nakajima, M.;
Loescher, S.; Rueping, M. Angew. Chem., Int. Ed. 2016, 55, 6776.
(f) Fuentes de Arriba, A. L.; Urbitsch, F.; Dixon, D. J. Chem. Commun.
2016, 52, 14434. (g) Kizu, T.; Uraguchi, D.; Ooi, T. J. Org. Chem.
2016, 81, 6953. (h) Qi, L.; Chen, Y. Angew. Chem., Int. Ed. 2016, 55,
13312. (i) Fava, E.; Nakajima, M.; Nguyen, A. L.; Rueping, M. J. Org.
Chem. 2016, 81, 6959. (j) Li, W.; Duan, Y.; Zhang, M.; Cheng, J.;
Zhu, C. Chem. Commun. 2016, 52, 7596. (k) Ma, J.; Harms, K.;
Meggers, E. Chem. Commun. 2016, 52, 10183. (l) Patel, N. R.; Kelly,
C. B.; Siegenfeld, A. P.; Molander, G. A. ACS Catal. 2017, 7, 1766.
(m) Pitzer, L.; Sandfort, F.; Strieth-Kalthoff, F.; Glorius, F. J. Am.
Chem. Soc. 2017, 139, 13652. (n) van As, D. J.; Connell, T. U.;
Brzozowski, M.; Scully, A. D.; Polyzos, A. Org. Lett. 2018, 20, 905.
(o) Lee, K. N.; Ngai, M.-Y. Chem. Commun. 2017, 53, 13093.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
X.F. thanks the Young Scientists Fund of the National Natural
Science Foundation of China (21708020) and the Natural
Science Foundation of Jiangsu Provence (BK20170969) for
financial support. P.J.W. is grateful to the NSF (CHE-
1464744) for support.
REFERENCES
■
(1) (a) Waser, M.; Novacek, J. Angew. Chem., Int. Ed. 2015, 54,
14228. (b) Wu, Y.; Hu, L.; Li, Z.; Deng, L. Nature 2015, 523, 445.
(c) Hu, L.; Wu, Y.; Li, Z.; Deng, L. J. Am. Chem. Soc. 2016, 138,
15817.
D
Org. Lett. XXXX, XXX, XXX−XXX