Table 2 Second cycloaddition of 2 to afford bis-cycloadducts 3–6
Cycloadduct
(% yield)b
Run
Dienophilea
TCNE
Diene
Reaction conditions
Ratioc
1
2
3
4
5
6
7
8
9
2a
2b
2c
2a
2b
2c
2a
2b
2c
2a
2b
2c
Benzene, room temp., 5 min
Benzene, room temp., 5 min
Benzene, room temp., 5 min
Toluene, 110 °C, 10 min
Toluene, 110 °C, 10 min
Toluene, 110 °C, 10 min
Toluene, 110 °C, 7 h
Toluene, 110 °C, 17 h
Toluene, 110 °C, 4 h
Toluene, 110 °C, 9 h
3a (99)
3b (97)
3c (99)
4a (94)
4b (89)
4c (99)
5a (97)
5b (88)
5c (99)
6a (99)
6b (91)
6c (99)
—
—
—
—
—
—
56:44
70:30
38:62
57:43
59:41
53:47
DAD
NPMI
DMF
10
11
12
Toluene, 110 °C, 17 h
Toluene, 110 °C, 9 h
a
b
c
TCNE: tetracyanoethylene; DAD: diethyl azodicarboxylate; NPMI: N-phenylmaleimide; DMF: dimethyl fumarate. Isolated yield. Ratio (endo:exo)
determined by 1H NMR spectroscopy. The term endo refers to a cis-relationship between H4a and H5 and the term exo a trans-relationship.
(C), 135.4 (C), 137.0 (C), 139.3 (C), 139.4 (C), 141.5 (C), 144.4 (C), 150.7
(CO), 174.7 (CO) and 176.7 (CO).
cycloadduct 4‡ in good yield. With N-phenylmaleimide
(NPMI) and dimethyl fumarate (DMF) second cycloadditions
were effected upon heating in toluene for 4–17 h to produce
References
excellent yields of the cycloadducts 5 and 6 with complete
diastereoisoface selectivity but with almost no endo:exo-
selectivity. The results are summarised in Table 2. Fig. 1 shows
the most probable stereochemical (conformational and config-
urational) structures of the mono- (2) and bis-cycloadducts
(3–6) which were deduced from 1H NMR spectroscopic studies
and computational calculations using MOPAC 93, CONFLEX,
LAOCOON III and 3JHH2 programs.4,10,11
1 For excellent reviews and monographs on such sequential, multistep
processes (the so-called domino, tandem or cascade strategy) involving
a Diels–Alder reaction, see F. Fringuelli and A. Taticchi, Dienes in the
Diels–Alder Reaction, Wiley, New York, 1990; T.-L. Ho, Tandem
Organic Reactions, Wiley, New York, 1992; L. F. Tietze and
U. Beifuss, Angew. Chem., Int. Ed. Engl., 1993, 32, 131; L. F. Tietze,
Chem. Rev., 1996, 96, 115; S. E. Denmark and A. Thorarensen, Chem.
Rev., 1996, 96, 137; J. D. Winkler, Chem. Rev., 1996, 96, 167. For recent
publications, see ‘Cascade Reactions’, Tetrahedron Symposia-in-Print,
1996, 52, 11 385; K. H. Ang, S. Brase, A. G. Steinig, F. E. Meyer,
A. Llebaria, K. Voigt and A. de Meijere, Tetrahedron, 1996, 52, 11 503;
S. E. Denmark and C. B. W. Senanayake, Tetrahedron, 1996, 52,
11 579; A. Franz, P.-Y. Eschler, M. Thrin and R. Neier, Tetrahedron,
1996, 52, 11 643; A. Hosomi, T. Masunari, Y. Tominaga, T. Yanagi and
M. Hojo, Tetrahedron Lett., 1990, 31, 6201.
2 O. Tsuge, S. Kanemasa, E. Wada and H. Sakoh, Yuki Gosei Kagaku
Kyokaishi, 1986, 44, 756; O. Tsuge, E. Wada and S. Kanemasa, Chem.
Lett., 1983, 239; O. Tsuge, E. Wada, S. Kanemasa and H. Sakoh, Bull.
Chem. Soc. Jpn., 1984, 57, 3221; O. Tsuge, S. Kanemasa, H. Sakoh and
E. Wada, Bull. Chem. Soc. Jpn., 1984, 57, 3234; S. Kanemasa,
H. Sakoh, E. Wada and O. Tsuge, Bull. Chem. Soc. Jpn., 1985, 58, 3312;
S. Kanemasa, H. Sakoh, E. Wada and O. Tsuge, Bull. Chem. Soc. Jpn.,
1986, 59, 1869.
Thus, it has been shown that the DTHDA methodology of
cross-conjugated azatrienes is successfully applied to a synthe-
sis of ring-fused nitrogen heterocycles.
Footnotes
† The imine 1 was prepared by Barluenga’s method involving the reaction
of iminophosphorane with prop-2-ynyltriphenylphosphonium salt, fol-
lowed by successive treatment with an aldehyde, butyllithium and an
aldehyde (Method B, 60–70% yield).8 Otherwise, the imine 1 was more
conveniently prepared by the condensation reaction of di-b-styryl ketone
with an amine in the presence of TiCl4 and triethylamine (method A,
90–95% yield).9
‡ Selected data for 2a: mp 132–133 °C; m/z 506 (M+, 0.5%) and 309 (M+
2 TsNCO, 100%); nmax (KBr)/cm21 1170, 1362 (SO2) and 1698 (CO); dH
(270 MHz, CDCl3) 2.19 [s, 3 H, CH3 (Ts)], 5.73 (d, 1 H, J 6.9 Hz, 5-H), 5.85
(d, 1 H, J 16.2 Hz, 7-H), 6.09 (d, 1 H, J 6.9 Hz, 4-H), 6.57 (d, 1 H, J 16.2
Hz, 8-H), 6.90 (d, 2 H, J 8.58 Hz, ArH), 6.97–7.02 (m, 2 H, ArH) and
7.08–7.31 (m, 15 H, ArH); dC (DEPT, CDCl3) 21.5 (CH3), 56.9 (CH), 103.8
(CH, C-5), 120.5 (CH), 125.6 (2CH), 125.8 (2CH), 127.0 (CH), 127.4 (CH),
127.5 (CH), 127.6 (2CH), 127.7 (2CH), 127.8 (2CH), 128.0 (2CH), 128.06
(2CH), 128.10 (2CH), 131.3 (CH), 135.8 (C), 136.0 (C), 137.1 (C), 137.5
(C), 140.3 (C), 140.0 (C) and 150.0 (CO). For 3a: mp 160–163 °C; m/z
(FAB) 635 (M+ + 1, 2%), 309 (M+ 2 TCNE 2 TsNCO, 98%) and 308
(100%); HRMS (FAB) found M+ + 1 635.1860 C37H27O3N6S requires M +
1, 635.1868; nmax (KBr)/cm21 1174, 1364, 1718 (CO) and 2256 (CN); dH
(270 MHz, CDCl3, [H,H]-COSY) 2.31 [s, 3 H, CH3 (Ts)], 3.92 (dd, 1 H,
J 5.0, 2.3 and 2.3 Hz, 4a-H), 4.32 (dd, 1 H, J 3.6 and 2.3 Hz, 7-H), 5.29 (dd,
1 H, J 3.6 and 2.3 Hz, 8-H), 6.14 (d, 1 H, J 5.0 Hz, 4-H), 6.99 (d, 2 H, J 8.6
Hz, ArH) and 7.29–7.48 (m, 17 H, ArH); dC (DEPT, CDCl3) 21.5 (CH3),
42.7 (C), 45.5 (C), 47.7 (CH), 49.1 (CH), 59.4 (CH), 108.0 (CN), 109.1
(CN), 110.3 (CN), 111.2 (CN), 111.7 (CH), 127.4 (2CH), 128.0 (2CH),
128.8 (2CH), 129.1 (CH), 129.3 (4CH), 129.76 (2CH), 129.81 (CH), 130.1
(2CH), 130.3 (2CH), 130.6 (CH), 131.0 (C), 135.0 (C), 135.4 (C), 137.1 (C),
137.2 (C), 144.9 (C) and 149.4 (CO). For 5a (exo): mp 151–152 °C; m/z 679
(M+ + 1, 24%), 525 (M+ 2 TsH, 32%) and 481 (100%); nmax (KBr)/cm21
1170, 1386 and 1716 (CO); dH (270 MHz, [2H]10- p-xylene, [H,H]- and
[C,H]-COSY in CDCl3) 1.86 [s, 3 H, CH3 (Ts)], 2.21 (dd, 1 H, J 10.6 and
10.6 Hz, 5-H), 2.66 (br d, 1 H, J 10.6 Hz, 4a-H), 3.13 (br d, 1 H, J 10.6 Hz,
7-H), 3.34 (dd, 1 H, J 10.6 and 10.6 Hz, 6-H), 4.83 (br s, 1 H, 8-H), 6.90 (br
s, 1 H, 4-H) and 6.58–7.82 (m, 24 H, ArH); dC (DEPT, CDCl3) 21.5 (CH3),
43.2 (CH), 43.6 (CH), 46.1 (CH), 48.2 (CH), 58.7 (CH), 115.8 (CH), 126.1
(2CH), 126.3 (2CH), 127.4 (CH), 127.8 (CH), 128.3 (2CH), 128.5 (2CH),
128.68 (CH), 128.75 (2CH), 128.9 (3CH), 129.1 (6CH), 129.6 (CH), 131.3
3 S. Motoki, Y. Matsuo and Y. Terauchi, Bull. Chem. Soc. Jpn., 1990, 63,
284.
4 T. Saito, H. Kimura, K. Sakamaki, T. Karakasa and S. Moriyama, Chem.
Commun., 1996, 811.
5 O. Tsuge, T. Hatta, K. Yakata and H. Maeda, Chem. Lett., 1994, 1833;
O. Tsuge, T. Hatta, H. Yoshitomi, K. Kurosaka, T. Fujiwara, H. Maeda
and A. Kakehi, Heterocycles, 1995, 41, 225.
6 G. Spino and G. Liu, J. Org. Chem., 1993, 58, 817.
7 D. L. Boger and S. M. Weinreb, Hetero Diels–Alder Methodology in
Organic Synthesis, Academic, New York, 1987; D. L. Boger, in
Comprehensive Organic Synthesis, ed. B. M. Trost, I. Fleming and L. A.
Paquett, Pergamon, Oxford, 1991, vol. 5, p. 451; J. Barluenga, Adv.
Heterocycl. Chem., 1993, 57, 1.
8 J. Barluenga, I. Merino and F. Palacios, J. Chem. Soc., Perkin Trans. 1,
1991, 341; K. Eiter and H. Oediger, Justus Liebigs Ann. Chem., 1965,
682, 62.
9 D. L. Boger, W. L. Cobett, T. T. Curran and A. M. Kasper, J. Am. Chem.
Soc., 1991, 113, 1713.
10 S. Moriyama, T. Karakasa, T. Inoue, K. Kurashima, S. Satsumabayashi
and T. Saito, Synlett, 1996, 72.
11 LAOCOON III, D. F. Detar, Computer Programs for Chemistry, W. A.
Benjamin, Inc., New York 1968, vol. 1, p 10; Chemistry and Software
No. 8007 program was used. The following JCPE (Japan Chemistry
Program Exchange) programs were used: CONFLEX (program No.
P040), MOPAC 93 (program No. P081), and 3JHH2 (program No.
P012).
Received in Cambridge, UK, 6th March 1997; Com.
7/01575E
1014
Chem. Commun., 1997