Organic Letters
Letter
(10) (a) Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P.
Angew. Chem., Int. Ed. 2006, 45, 6040. (b) Krasovskiy, A.; Gavryushin,
A.; Knochel, P. Synlett 2005, 2691. (c) Krasovskiy, A.; Gavryushin, A.;
Knochel, P. Synlett 2006, 792.
(11) (a) Baars, H.; Beyer, A.; Kohlhepp, S. V.; Bolm, C. Org. Lett.
2014, 16, 536. (b) Beyer, A.; Reucher, C. M. M.; Bolm, C. Org. Lett.
2011, 13, 2876.
(12) Copper has a very high binding affinity for dithiocarbamates,
which has been used for metal removal. For example, see: Gallagher,
W. P.; Vo, A. Org. Process Res. Dev. 2015, 19, 1369.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
General procedure for product preparation and analytical
data, including 1H and 13C NMR spectra of the products
(13) Metal dithiocarbamate complexes exhibit a rich coordination
chemistry, and various assemblies with copper in different oxidation
states are known. For details, see: Hogarth, G. Prog. Inorg. Chem. 2005,
53, 71 and references therein. It could be that such complexes play a
role in the catalysis reported here.
(14) For stimulating overviews of mechanistic aspects of Ullmann
couplings, see: (a) Sperotto, E.; van Klink, G. P. M.; van Koten, G.; de
Vries, J. G. Dalton Trans 2010, 39, 10338. (b) Sambiagio, C.; Marsden,
S. P.; Blacker, A. J.; McGowan, P. C. Chem. Soc. Rev. 2014, 43, 3525.
(15) For a review of radical additions to CS bonds to form C−S
bonds, see: Liu, D.; Liu, C.; Lei, A. Chem. - Asian J. 2015, 10, 2040.
AUTHOR INFORMATION
■
Corresponding Authors
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the National Natural Science Foundation of China
(21302150) for financial support. Z.-B.D. acknowledges the
Humboldt Foundation for a fellowship. We also thank Prof. Dr.
Aiwen Lei (Wuhan University, China) for generous NMR
analysis support.
REFERENCES
■
(1) Enders, D.; Rembiak, A.; Liebich, J. X. Synthesis 2011, 281.
(2) (a) D’hooghe, M.; De Kimpe, N. Tetrahedron 2006, 62, 513.
(b) Erian, A. W.; Sherif, S. M. Tetrahedron 1999, 55, 7957. (c) Goel,
A.; Mazur, S. J.; Fattah, R. J.; Hartman, T. L.; Turpin, J. A.; Huang, M.;
Rice, W. G.; Appella, E.; Inman, J. K. Bioorg. Med. Chem. Lett. 2002, 12,
767.
(3) (a) Len, C.; Postel, D.; Ronco, G.; Villa, P.; Goubert, C.;
Jeufrault, E.; Mathon, B.; Simon, H. J. Agric. Food Chem. 1997, 45, 3.
(b) Rafin, C.; Veignie, E.; Sancholle, M.; Postel, D.; Len, C.; Villa, P.;
Ronco, G. J. Agric. Food Chem. 2000, 48, 5283.
(4) (a) Boas, U.; Gertz, H.; Christensen, J. B.; Heegaard, P. M.
Tetrahedron Lett. 2004, 45, 269. (b) Mukerjee, A. K.; Ashare, R. Chem.
Rev. 1991, 91, 1.
(5) (a) Chin-Hsien, W. Synthesis 1981, 622. (b) Tilles, H. J. Am.
Chem. Soc. 1959, 81, 714. (c) Walter, W.; Bode, K. D. Angew. Chem.,
Int. Ed. Engl. 1967, 6, 281.
(6) (a) Azizi, N.; Aryanasab, F.; Saidi, M. R. Org. Lett. 2006, 8, 5275.
(b) Chaturvedi, D.; Ray, S. Tetrahedron Lett. 2006, 47, 1307.
(c) Salvatore, R. N.; Sahab, S.; Jung, K. W. Tetrahedron Lett. 2001,
42, 2055.
(7) For the preparation of aryl dithiocarbamates by couplings of
boronic acids, amines, and CS2 in the presence of stoichiometric
amounts of Cu(OAc)2, see: Qi, C.; Guo, T.; Xiong, W. Synlett 2016,
27, 2626.
(8) Closely related to the work reported here are Ullmann-type
couplings of aryl iodides and vinyl bromides with sodium
dithiocarbamates. (We thank a reviewer for alerting us to this work.)
There, however, more catalyst (15 mol % CuI) and a valuable ligand
(30 mol % N,N-dimethylglycine) are applied, and the reaction
temperature is higher (100 °C). Furthermore, sodium dithiocarbamtes
are generally more expensive than the thiuram reagents used here. For
details, see: Liu, Y.; Bao, W. Tetrahedron Lett. 2007, 48, 4785.
(9) For a synthetic approach toward cyclic thiocarbamides starting
from β-amino alcohols, which are treated with chloroform, elemental
sulfur, and potassium tert-butoxide, see: Tan, W.; Wei, J.; Jiang, X. Org.
Lett. 2017, 19, 2166.
D
Org. Lett. XXXX, XXX, XXX−XXX