5642
A. Madhan, B. Venkateswara Rao / Tetrahedron Letters 44 (2003) 5641–5643
Scheme 1. Reagents and conditions: (a) BnNH2, anhy.MgSO4, dry ether, 0°C–rt, 2 h; (b) CH2ꢀCHꢁMgBr, dry ether, 0°C–rt, 15
h, 76% (overall yield for two steps); (c) (Boc)2O, Et3N, dry DCM, 0°C–rt, 24 h, 72%; (d) Li, liq NH3, THF, −50°C, 1 h, 81%;
(e) Allyl bromide, NaH (60%), DMF, 0°C–rt, 12 h, 75%; (f) 10 mol% Grubbs’ catalyst [Cl2(Pcy3)2RuꢀCHPh], DCM, rt, 12 h, 75%;
(g) OsO4 (10 mol%), NMO monohydrate, acetone:H2O (3:1), 12 h, 80%; (h) methanol–HCl, rt, 10 h, 82%.
Scheme 2. Reagents and conditions: (a) 2,2-DMP, cat. PTSA, dry acetone, rt, 12 h, 71%; (b) 60% AcOH, 48 h, 73%.
11
9 with OsO4 (10 mol%), and NMO in acetone:H2O
resulted in compound 10, [h]2D5=−36.4 (c 0.5, CHCl3) as
a single isomer. Compound 10 on treatment with
MeOH–HCl12 finally afforded the target molecule 1, as
its HCl salt, [h]D25=+25.0 (c 1, H2O) [lit.5j [h]2D5=+25.6
(c 0.9, H2O)] whose NMR spectral data were in good
agreement with the literature.5i,j
References
1. For a review, see: Asano, N.; Nash, R. J.; Molyneux, R.
J.; Fleet, G. W. J. Tetrahedron: Asymmetry 2000, 11, 1645.
2. (a) Enomoto, M.; Ito, Y.; Katuski, T.; Yamaguchi, M.
Tetrahedron Lett. 1985, 26, 1343; (b) Evans, D. A.; McGee,
I. R. J. Am. Chem. Soc. 1981, 103, 2876.
3. Ito, Y.;Katuski, T.;Yamaguchi, M. TetrahedronLett. 1984,
25, 6015.
4. Katuski, T.; Yamaguchi, M. Tetrahedron Lett. 1985, 26,
5807.
The synthesis of (2S,3R,4S)-3,4-dihydroxyproline was
achieved as follows: Treatment of 10 with 2,2-DMP
(cat. PTSA, acetone) under anhydrous conditions gave
11 which on selective hydrolysis of the side-chain ace-
tonide gave compound 12 [h]2D5=−34.9 (c 0.9, CHCl3)
[lit.5i [h]D25=−33.5 (c 0.17, CHCl3)] (Scheme 2). The
NMR spectral data of 12 were in agreement with those
reported.5i Compound 12 has been converted to
(2S,3R,4S)-3,4-dihydroxyproline 2 in three steps by
Fleet et al.,5i so providing the formal synthesis of 2.
5. (a) Pham-Huu, D. P.; Gizaw, Y.; BeMiller, J. N.; Petrus,
L. Tetrahedron Lett. 2002, 43, 383; (b) Lee, E. R.; Smith,
D. M.; Nash, J. R.; Griffiths, C. R.; McNeil, M.; Grewal,
K. R.; Yan, W.; Besra, S. G.; Brennan, J. P.; Fleet, G. W.
J. Tetrahedron Lett. 1997, 38, 6733; (c) Bernotas, C. R.
Tetrahedron Lett. 1990, 39, 469; (d) Lundt, I.; Madsen, R.
Synthesis 1993, 720; (e) Paulsen, H.; Steinert, K.; Henys,
K. Chem. Ber. 1970, 103, 1599; (f) Lombardo, M.; Fab-
broni, S.; Trombini, C. J. Org. Chem. 2001, 66, 1264; (g)
Ayad, T.; Genisson, Y.; Baltas, M.; Gorrichon, L. Synlett
2001, 866; (h) Kuszman, J.; Kiss, L. Carbohydr. Res. 1986,
53, 45; (i) Fleet, G. W. J.; Son, J. C. Tetrahedron 1988, 44,
2637; (j) Buchnnan, J. G.; Lumbard, K. W.; Sturgeon, R.
J.; Thompson, D. K. J. Chem. Soc., Perkin Trans. 1 1990,
699; (k) Long, D. D.; Stetz, R. J. E.; Nash, R. J.; Marquess,
D. G.; Lloyd, J. D.; Winters, A. L.; Asano, N.; Fleet, G.
W. J. Chem. Soc., Perkin Trans. 1 1999, 901; (l) Appel, R.;
Kleinstuck, R. Chem. Ber. 1974, 107, 5; (m) Lundt, I.;
Madsen, R. Synthesis 1993, 714 and references cited therein.
6. Badorrey, R.; Cativiela, C.; Diaz-de-villegas, M. D.;
Galvez, J. A. Tetrahedron 1997, 53, 1411.
In conclusion, a highly efficient stereoselective synthesis
of 1,4-dideoxy-1,4-imino- -allitol 1 has been achieved
D
via a strategy which may be useful for the synthesis of
analogues of 1.
Acknowledgements
One of the authors (A.M.) thanks the CSIR, New
Delhi, for a research fellowship. We also thank Dr. J. S.
Yadav and Dr. G. V. M. Sharma for their support and
encouragement.