Page 5 of 13
Journal of the American Chemical Society
[Ir(tpy)(ppy)H]+: Experimental and Computational Studies of their Hy-
(18) Kavarnos, G. J. Fundamentals of Photoinduced Electron Transfer; Wiley-
VCH: New York, 1993.
(19) (a) Marcus, R. A. Chemical and Electrochemical Electron-Transfer The-
ory. Annu. Rev. Phys. Chem. 1964, 15, 155–196. (b) Marcus, R. A. Electron
Transfer Reactions in Chemistry: Theory and Experiment. Angew. Chem.,
Int. Ed. Engl. 1993, 32, 1111–1121.
dricities, Interaction with CO2, and Photochemistry. Angew. Chem., Int. Ed.
2015, 54, 14128–14132. (d) Genoni, A.; Chirdon, D. N.; Boniolo, M.; Sar-
torel, A.; Bernhard, S.; Bonchio, M. Tuning Iridium Photocatalysts and
Light Irradiation for Enhanced CO2 Reduction. ACS Catal. 2017, 7, 154–
160. (e) Sato, S.; Morikawa, T. [Ir(tpy)(bpy)Cl] as a Photocatalyst for CO2
Reduction under Visible-Light Irradiation. ChemPhotoChem 2018, 2, 207
– 212.
1
2
3
4
5
6
7
8
9
(20) (a) Tamaki, Y.; Koike, K.; Morimoto, T.; Ishitani, O. Substantial Improve-
ment in the Efficiency and Durability of a Photocatalyst for Carbon Dioxide
Reduction Using a Benzoimidazole Derivative as an Electron Donor. J.
Catal. 2013, 304, 22–28. (b) Hasegawa, E.; Takizawa, S.; Seida, T.; Yama-
guchi, A.; Yamaguchi, N.; Chiba, N.; Takahashi, T.; Ikeda, H.; Akiyama, K.
Photoinduced Electron-Transfer Systems Consisting of Electron-Donating
Pyrenes or Anthracenes and Benzimidazolines for Reductive Transfor-
mation of Carbonyl Compounds. Tetrahedron 2006, 62, 6581–6588.
(21) The g parameters exhibited that the spin density in the OERS is predomi-
nantly located on bipyridine (bpy). However, the large g anisotropy cannot
be simply described as an IrIII(bpy•–) complex suggested by other groups,
signifying isomeric form between Ir(II) and Ir(III)(bpy•–).
(22) (a) Bokarev, S. I.; Hollmann, D.; Pazidis, A.; Neubauer, A.; Radnik, J.;
Kühn, O.; Lochbrunner, S.; Junge, H.; Beller, M.; Brückner, A. Spin Density
Distribution after Electron Transfer from Triethylamine to an
[Ir(ppy)2(bpy)]+ Photosensitizer during Photocatalytic Water Reduction.
Phys. Chem. Chem. Phys. 2014, 16, 4789–4796. (b) Bruin, B.; Peters, T. P.
J.; Thewissen, S.; Blok, A. N. J.; Wilting, J. B. M.; Gelder, R.; Smits, J. M. M.;
Gal, A. W. Dioxygen Activation by a Mononuclear IrII–Ethane Complex.
Angew. Chem. Int. Ed. 2002, 41, 2135–2138. (c) Stinner, C.; Wightman, M.
D.; Kelley, S. O.; Hill, M. G.; Barton, J. K. Synthesis and Spectroelectro-
chemistry of Ir(bpy)(phen)(phi)3+, a Tris(heteroleptic) Metallointercala-
tor. Inorg. Chem. 2001, 40, 5245-5250.
(23) Dragonetti, C.; Falciola, L.; Mussini, P.; Righetto, S.; Roberto, D.; Ugo, R.;
Valore, A. The Role of Substituents on Functionalized 1,10-Phenanthroline
in Controlling the Emission Properties of Cationic Iridium(III) Complexes
of Interest for Electroluminescent Devices. Inorg. Chem. 2007, 46, 8533-
8547.
(24) (a) Suenobu, T.; Guldi, D. M.; Ogo, S.; Fukuzumi, S. Excited-State Depro-
tonation and H/D Exchange of an Iridium Hydride Complex. Angew.
Chem., Int. Ed. 2003, 42, 5492–5495. (b) Wiedner, E. S.; Chambers, M. B.;
Pitman, C. L.; Bullock, R. M.; Alexander J. M. Miller, A. J. M.; Appel, A. M.
Thermodynamic Hydricity of Transition Metal Hydrides. Chem. Rev. 2016,
116, 8655–8692.
(25) Schmeier, T. J.; Dobereiner, G. E.; Crabtree, R. H.; Hazari, N. Secondary
Coordination Sphere Interactions Facilitate the Insertion Step in An Irid-
ium(III) CO2 Reduction Catalyst. J. Am. Chem. Soc. 2011, 133, 9274–9277.
(26) (a) Oldenhof, S.; van der Vlugt, J. I.; Reek, J. N. H. Hydrogenation of CO2
to formic acid with iridiumIII(bisMETAMORPhos)(hydride): the role of a
dormant fac-IrIII(trihydride) and an active trans-IrIII(dihydride) species.
Catal. Sci. Technol. 2016, 6, 404–408. (b) Li, H.; Wang, X.; Huang, F.; Lu,
G.; Jiang, J.; Wang, Z.-X. Computational Study on the Catalytic Role of Pin-
cer Ruthenium(II)-PNN Complex in Directly Synthesizing Amide from Al-
cohol and Amine: The Origin of Selectivity of Amide over Ester and Imine.
Organometallics 2011, 30, 5233–5247.
(27) Cyclic voltammograms suggest that CO2 reacts with OERS of 1 which has
an Ir–H bond and there are many literatures to report that CO2 insertion
into M–H bond gives HCOOH; Wang, W.-H.; Himeda, Y.; Muckerman, J.
T.; Manbeck, G. F.; Fujita, E. CO2 Hydrogenation to Formate and Metha-
nol as an Alternative to Photo- and Electrochemical CO2 Reduction. Chem.
Rev. 2015, 115, 12936−12973.
(10) (a) Lee, S. K.; Kondo, M.; Okamura, M.; Enomoto, T.; Nakamura, G.;
Masaoka, S. Function-Integrated Ru Catalyst for Photochemical CO2 Re-
duction. J. Am. Chem. Soc. 2018, 140, 16899−16903. (b) Das, S.; Rodrigues,
R. R.; Lamb, R. W.; Qu, F.; Reinheimer, E.; Boudreaux, C. M.; Webster, C.
E.; Delcamp, J. H.; Papish, E. T. Highly Active Ruthenium CNC Pincer
Photocatalysts for Visible-Light-Driven Carbon Dioxide Reduction. Inorg.
Chem. 2019, 58, 8012–8020.
(11) (a) Rao, H.; Bonin, J.; Robert, M. Non-sensitized Selective Photochemical
Reduction of CO2 to CO under Visible Light with an Iron Molecular Cata-
lyst. Chem. Commun. 2017, 53, 2830–2833. (b) Bonin, J.; Chaussemier, M.;
Robert, M.; Routier, M. Homogeneous Photocatalytic Reduction of CO2
to CO Using Iron(0) Porphyrin Catalysts: Mechanism and Intrinsic Limi-
tations. ChemCatChem 2014, 6, 3200–3207. (c) Behar, D.; Dhanasekaran,
T.; Neta, P. Cobalt Porphyrin Catalyzed Reduction of CO2. Radiation
Chemical, Photochemical, and Electrochemical Studies. J. Phys. Chem. A
1998, 102, 2870–2877.
(12) (a) Miura, T.; Held, I. E.; Oishi, S.; Naruto, M.; Saito, S. Catalytic Hydro-
genation of Unactivated Amides Enabled by Hydrogenation of Catalyst
Precursor. Tetrahedron Lett. 2013, 54, 2674–2678; (b) Miura, T.; Naruto,
M.; Toda, K.; Shimomura, T.; Saito, S. Multifaceted Catalytic Hydrogena-
tion of Amides via Diverse Activation of a Sterically Confined Bipyridine–
ruthenium Framework. Sci. Rep. 2017, 7, 1586. (c) Hashimoto, A.; Yama-
guchi, H.; Suzuki, T.; Kashiwabara, K.; Kojima, M.; Takagi, H. Preparation,
Crystal Structures, and Spectroscopic and Redox Properties of Nickel(II)
Complexes Containing Phosphane–(Amine or Quinoline)-Type Hybrid
Ligands and a Nickel(I) Complex Bearing8-(Diphenylphosphanyl)quino-
line. Eur. J. Inorg. Chem.2010, 39–47. (d) Nimura, S.; Yoshioka, S.; Naruto,
M.; Saito, S., Reaction of H2 with Mitochondria-Relevant Metabolites Us-
ing a Multifunctional Molecular Catalyst. ChemRxiv. Preprint (2020).
(13) (a) Zhu, S.-F.; Zhou, Q.-L. Iridium-Catalyzed Asymmetric Hydrogenation
of Unsaturated Carboxylic Acids. Acc. Chem. Res. 2017, 50, 988–1001. (b)
Li, J.-Q.; Liu, J.; Krajangsri, S.; Chumnanvej, N.; Singh, T.; Andersson, P.
G. Asymmetric Hydrogenation of Allylic Alcohols Using Ir−N,P–Com-
plexes. ACS Catal. 2016, 6, 8342–8349.
(14) When CO2 photoreduction was performed in an anhydrous DMA solution,
the reactivity in 24 h irradiation (total TON = 193) is lower than those (to-
tal TON = 386) in a mixed DMA/H2O (v/v = 9:1) solution (Table S1; en-
try 2 and 3) probably due to stabilization of a transition state by hydrogen
bonding interactions with H2O; Dub, P. A.; Gordon, J. C. Metal−Ligand
Bifunctional Catalysis: The “Accepted” Mechanism, the Issue of Concert-
edness, and the Function of the Ligand in Catalytic Cycles Involving Hy-
drogen Atoms. ACS Catal.2017, 7, 6635−6655.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(15) Hatchard, C. G.; Parker, C. A. A New Sensitive Chemical Actinometer. II.
Potassium Ferrioxalate as a Standard Chemical Actinometer. Proc. R. Soc.
London, Ser. A 1956, 235, 518−536.
(16) Nakagawa, T.; Okamoto, K.; Hanada, H.; Katoh, R. Probing with Ran-
domly Interleaved Pulse Train Bridges the Gap between Ultrafast Pump-
probe and Nanosecond Flash Photolysis. Opt. Lett. 2016, 41, 1498–1501.
(17) (a) Ballardini, R.; Varani, G.; Indelli, M. T.; Scandola, F. Phosphorescent 8-
Quinolinol Metal Chelates. Excited-State Properties and Redox Behavior.
Inorg. Chem. 1986, 25, 3858-3865. (b) Liu, X.-Y.; Zhang, Y.-H.; Fang, W.-
H.; Cui, G. Early-Time Excited-State Relaxation Dynamics of Iridium
Compounds: Distinct Roles of Electron and Hole Transfer. J. Phys. Chem.
A 2018, 122, 5518−5532.
(28) As long as we know, there are no report that CO was produced after CO2
insertion into an Ir–H bond. CO should be formed after formation of M–
CO2H complex; Yamazaki, Y.; Takeda, H.; Ishitani, O. Photocatalytic Re-
duction of CO2 Using Metal Complexes. J. Photochem. Photobiol. C 2015,
25, 106–137.
ACS Paragon Plus Environment