4
Tetrahedron
Kim, S. H.; Wu, J. H.; Castle, S. L.; Loiseleur, O.; Jin, Q. J. Am.
Chem. Soc. 1999, 121, 10004–10011. (i) Arnusch, C. J.; Pieters,
R. J. Eur. J. Org. Chem. 2003, 3131–3138. (j) Pearson, A. J.;
Ciurea D. V. J. Org. Chem. 2008, 73, 760–763.
proper alignment of hydrogen bonding and further
rigidification, possibly in attempts to combine the ABC and
CDE-ring systems.9b
11. Although bicycle 10 represents the ACD-ring system of
vancomycin we call this fragment an ABC-ring mimic to stress the
fact that 10 represents the C-terminal part of vancomycin.
12. (a) Evans, D. A.; Dinsmore, C. J. Tetrahedron Lett. 1993, 34,
6029–6032. (b) Evans, D. A.; Dinsmore, C. J.; Evrard, D. A.;
DeVries, K. M. J. Am. Chem. Soc. 1993, 115, 6426–6427.
13. (a) Miller, S. J.; Blackwell, H. E.; Grubbs, R. H. J. Am. Chem.
Soc. 1996, 118, 9606–9614. (b) Gradillas, A.; Pérez-Castells, J.
Angew. Chem., Int. Ed. 2006, 45, 6086–6101. (c) Brik, A. Adv.
Synth. Catal. 2008, 350, 1161–1675. (d) Gleeson, E. C.; Jackson,
W. R.; Robinson, A. J. Tetrahedron Lett. 2016, 57, 4325–4333. (e)
Rijkers, D. T. S. Top. Heterocycl. Chem. 2017, 47, 191–244.
14. (a) Barlow, T. M. A.; Tourwé, D.; Ballet, S. Eur. J. Org. Chem.
2017, 4678– 4694. (b) Johansson, J. R.; Beke-Somfai, T.; Said
Stålsmeden, A.; Kann, N. Chem. Rev. 2016, 116, 14726–14768.
(c) Kelly, A. R.; Wei, J.; Kesavan, S.; Marié, J. C.; Windmon, N.;
Young, D. W.; Marcaurelle, L. A. Org. Lett. 2009, 11, 2257–2260.
(d) Boren, B. C.; Narayan, S.; Rasmussen, L. K.; Zhang, L.; Zhao,
H.; Lin, Z.; Jia, G.; Fokin, V. V. J. Am. Chem. Soc. 2008, 130,
8923–8930.
15. Nicolaou, K. C.; Boddy, C. N. C.; Li, H.; Koumbis, A. E.;
Hughes, R.; Natarajan, S.; Jain, N. F.; Ramanjulu, J. M.; Bräse, S.;
Solomon, M. E. Chem. Eur. J. 1999, 9, 2602–2621.
16. (a) Chinchilla, R.; Najera, C. Chem. Soc. Rev. 2011, 40, 5084–
5121. (b) Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874–
922.
17. Brucelle, F.; Renaud, P. Org. Lett. 2012, 14, 3048–3051.
18. Initially we used imidazole-1-sulfonyl azide·HCl as the diazo-
transfer reagent for the synthesis of azido acid 5, acccording to: (a)
Goddard-Borger, E. D.; Stick, R. V. Org. Lett. 2007, 9, 3797–
3800, however, currently the significantly safer to handle
imidazole-1-sulfonyl azide·H2SO4 is preferred, according to: (b)
Potter, G. T.; Jayson, G. C.; Miller, G. J.; Gardiner, J. M. J. Org.
Chem. 2016, 81, 3443–3446.
3. Conclusion
In conclusion, bicyclic tripeptide 10 as a mimic of the ABC-
ring system was successfully synthesized starting from precursor
dipeptide
7 following an RCM-coupling-RuAAC strategy.
Mimics of this part of the vancomycin structure are less explored
as only a single hydrogen bond contributes to the binding of Ac-
Lys(Ac)-D-Ala-D-Ala-OH via the carbonyl oxygen of the lysine
residue. The mixture of double bond isomers could be separated
by HPLC to give each individual E/Z diastereoisomer as the free
amine as judged by NMR and LC-MS. Bicyclic tripeptide 10
represents an important building block to ultimately arrive at a
series of tricyclic heptapeptides for possible effective mimicry of
vancomycin in which ruthenium-based cyclization approaches
will be used to control the topology and rigidity of the peptide
backbone.
Acknowledgments
This research was supported by the China Scholarship Council
(CSC) awarded to X.Y. We thank Javier Sastre Torano for
performing the HRMS analyses and Hao Zhang for his help with
the modeling experiments.
References and notes
1. (a) Gilon, C.; Halle, D.; Chorev, M.; Selinger, Z.; Byk, G.
Biopolymers 1991, 31, 745–750. (b) Wessjohann, L. A.; Ruijter,
E.; Garcia-Rivera, D.; Brandt, W. Mol. Divers. 2005, 9, 171–186.
(c) Katsara, M.; Tselios, T.; Deraos, S.; Deraos, G.; Matsoukas,
M.-T.; Lazoura, E.; Matsoukas, J.; Apostolopoulos, V. Curr. Med.
Chem. 2006, 13, 2221–2232. (d) Driggers, E. M.; Hale, S. P.; Lee,
J.; Terrett, N. K. Nat. Rev. Drug Discovery 2008, 7, 608–624. (e)
Marsault, E.; Peterson, M. L. J. Med. Chem. 2011, 54, 1961–2004.
(f) White, C. J.; Yudin A. K. Nat. Chem. 2011, 3, 509–524.
2. (a) Janes, R. W. Curr. Opin. Pharmacol. 2005, 5, 280–292. (b) de
Veer, S. J.; Weidmann, J.; Craik, D. J. Acc. Chem. Res. 2017, 50,
1557–1565.
19. Rijkers, D. T. S.; Adams, H. P. H. M.; Hemker, H. C.; Tesser, G.
I. Tetrahedron 1995, 51, 11235–11250.
20. Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996,
118, 100–110.
21. Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1,
953–956.
22. For a comprehensive review, see: Gololobov, Y. G.; Kasukhin, L.
F.; Tetrahedron 1992, 48, 1353–1406.
23. Garber, S. B.; Kingsbury, J. S.; Gray B. L.; Hoveyda, A. H. J. Am.
Chem. Soc. 2000, 122, 8168–8179.
24. Karplus M. J. Am. Chem. Soc. 1963, 85, 2870–2871.
25. (a) Meldal, M.; Tornøe C. W. Chem. Rev. 2008, 108, 2952–3015.
(b) Hein, J. E.; Fokin, V. V. Chem Soc Rev. 2010, 39, 1302–1315.
(c) Singh, M. S.; Chowdhury, S.; Koley, S. Tetrahedron 2016, 72,
5257–5283.
3. Chatterjee, C.; Paul, M.; Xie, L.; van der Donk, W. A. Chem. Rev.
2005, 105, 633–684.
4. Binda, E.; Marinelli, F.; Marcone, G. L. Antibiotics 2014, 3, 572–
594.
26. (a) Park, S.; Kim, M.; Lee, D. J. Am. Chem. Soc. 2005, 127, 9410–
9415. (b) Ostrowska, S.; Powala, B.; Jankowska-Wajda, M.; Zak,
P.; Rogalski, s.; Wyrzykiewicz, B.; Pietraszuk, C. J. Organomet.
Chem. 2015, 783, 135–140.
27. Modelling has been performed with using the YASARA software
(www.yasara.org).
28. The crystal structure of balhimycin (a vancomycin-related
glycopeptide antibiotic) in complex with Lys-D-Ala-D-Ala
(Protein Data bank accession code: 1GO6) was used,
see:Lehmann, C.; Bunkóczi, G.; Vértesy, L.; Sheldrick, G. M. J.
Mol. Biol. 2002, 318, 723–732.
29. McPhail, D.; Cooper, A. J. Chem. Soc. Faraday Trans. 1997, 93,
2283–2289.
30. Xie, J.; Okano, A.; Pierce J. G.; James, R. C.; Stamm, S.; Crane C.
M.; Boger, D. L. J. Am. Chem. Soc. 2012, 134, 1284–1297.
31. Wiegand, I.; Hilpert, K.; Hancock, R. E. W. Nature Protocols
2008, 3, 163–175.
5. (a) James, R. C.; Pierce, J. G.; Okano, A.; Boger, D. L. ACS
Chem. Biol. 2012, 7, 797–804. (b) Okano, A.; Isley, N. A.; Boger,
D. L. Chem. Rev. 2017, 117, 11952–11993.
6. (a) Williams, D. H.; Bardsley, B. Angew. Chem., Int. Ed. 1999, 38,
1172–1193. (b) Nicolaou, K. C.; Mitchell, H. J.; Jain, N. F.;
Winssinger, N.; Hughes, R.; Bando, T. Angew. Chem., Int. Ed.
1999, 38, 240–244.
7. ten Brink, H. T.; Rijkers, D. T. S.; Liskamp, R. M. J. J. Org.
Chem. 2006, 71, 1817–1824.
8. ten Brink, H. T.; Rijkers, D. T. S.; Kemmink, J.; Hilbers, H. W.;
Liskamp, R. M. J. Org. Biomol. Chem. 2004, 2, 2658–2663.
9. (a) Zhang, J.; Kemmink, J.; Rijkers, D. T. S.; Liskamp, R. M. J.
Org. Lett. 2011, 13, 3438–3441. (b) Zhang, J.; Kemmink, J.;
Rijkers, D. T. S.; Liskamp, R. M. J. Chem. Commun. 2013, 49,
4498–4500.
10. (a) Pant, N.; Hamilton, A. D. J. Am. Chem. Soc. 1988, 110, 2002–
2003. (b) Evans, D. A.; Ellman, J. A.; DeVries K. M. J. Am.
Chem. Soc. 1989, 111, 8912–8914. (c) Boger, D. L.; Borzilleri, R.
M.; Nukui, S. Bioorg. Med. Chem. Lett. 1995, 5, 3091–3096. (d)
Bois-Choussy, M.; Neuville, L.; Beugelmans, R.; Zhu, J. J. Org.
Chem. 1996, 61, 9309–9322. (e) Boger, D. l.; Borzilleri, R. M.;
Nukui, S.; Beresis, R. T. J. Org. Chem. 1997, 62, 4721–4736. (f)
Xu, R.; Greiveldinger, G.; Marenus, L. E.; Cooper, A.; Ellman, J.
A. J. Am. Chem. Soc. 1999, 121, 4898–4899. (g) Boger, D. L.;
Castle, S. L.; Miyazaki, S.; Wu, J. H., Beresis, R. T.; Loiseleur, O.
J. Org. Chem. 1999, 64, 70–80. (h) Boger, D. L.; Miyazaki, S.;
Supplementary Material
Experimental procedures, 1H and 13C NMR spectra, HPLC
profiles, HRMS spectra and ITC binding curves.