that, in the 400–5 K range, Fe(II) exhibits a high spin state in 4,
but low-spin magnetic behaviour in [Fe(Me2pipdt)3](BF4)2 (3). The
different magnetic behaviour can be explained by the difference in
the p-acceptor capability of the ligands. In fact, in the case of the
dithione the p-back-donation, which stabilizes the t2g orbitals of
the metal ion, is stronger than for the SO ligand, increasing the
10Dq separation energy between the d-orbitals and consequently
stabilizing the low-spin state. To support this, a DFT study on
complexes 3 and 4 was performed. In addition to the hybrid B3LYP
functional, the pure OLYP functional was used due to its good
performances in predicting the ground states of a number of iron
complexes.13,14 Accordingly, the geometries were optimized with
the OLYP functional for the singlet (S = 0) and quintet (S = 2) states
(see ESI†). From a comparison of the experimental and calculated
bond distances, the preferred ground states for complexes 4 and 3
are the S = 2 and S = 0, respectively. With the OLYP functional,
[Fe(Me2pipto)3]2+ exhibits an energy preference for the S = 2 state
over the S = 0 one of 60.14 kJ mol-1, whereas [Fe(Me2pipdt)3]2+
favours the S = 0 state over the S = 2 one by 31.88 kJ mol-1.
The spin density of 3 in the quintet state is located primarily on
the iron atom and to a minor extent over the sulfur and oxygen
atoms, Fig. 4. A different scenario is encountered when using the
B3LYP functional, since it decisively favours the S = 2 state for
both compounds. This is nevertheless in line with the property
of this density functional, which tends to overstabilize high spin
states. In order to obtain compounds that exhibit spin transition,
experiments to prepare mixed iron complexes of these ligands in
the 2 : 1 and 1 : 2 molar ratio are in progress. It can be anticipated
that [Fe(Me2pipto)2Cl2](BF4) will show high/low spin transition
at low temperature.
of Me2pipto and Me2pipdt ligands and in their coordination
properties towards metal ions, as shown in the cases reported
here: high spin vs. low spin in the iron(II) case, and octahedral vs.
square planar coordination in the nickel case.
Moreover the variation of the donor atom (O vs. S) will
allow evaluation of the influence of charge-separated character
by comparing the NLO-properties of mixed-ligand complexes of
the Nickel-triad15 based on dithiolate/R2pipdt or R2pipto ligands.
The authors are grateful to Prof. G. Concas, Dr F. Congiu and
Dr S. Sanna of the Dipartimento di Fisica, Universita` di Cagliari,
for the magnetic measurements on iron complexes.
This work has been supported by Universita` di Cagliari and
by COST Action D35, WG11 “Multifunctional and Switchable
Molecular Materials”.
Notes and references
‡ Crystal data for 1: C6H10N2OS, M = 158.22, orthorhombic, space group
3
˚
˚
Pna21, a = 9.758(4), b = 6.731(3), c = 11.686(6) A, V = 767.5(6) A , T =
293(2) K, Z = 4, 1067 measured reflections, 962 unique (Rint = 0.0320). R1 =
0.0431 (I > 2s(I)), wR2 = 0.0857(all data); CCDC 771140. Crystal data for
2: C18H30B2F8N6NiO3S3, M = 706.99, monoclinic, space group P21/n, a =
◦
˚
12.541(1), b = 12.255(1), c = 19.659(1) A, b = 101.198(3) , V = 2963.9(4)
3
˚
A , T = 293(2) K, Z = 4, 49228 measured reflections, 9916 unique (Rint
=
0.0355). R1 = 0.0397(I > 2s(I)), wR2 = 0.1226(all data); CCDC 771141.
Crystal data for 4: C18H30B2F8FeN6O3S3, M = 704.13, monoclinic,◦space
˚
group C2/c, a = 20.40(1), b = 10.992(8), c = 16.20(1) A, b = 129.60(2) , V =
3
˚
2799(3) A , T = 293(2) K, Z = 4, 13694 measured reflections, 2731 unique
(Rint = 0.0396). R1 = 0.0547(I > 2s(I)), wR2 = 0.1702(all data); CCDC
771142.
§ The cyclic voltammetry measurements were performed in CH3CN
solution, with Ag/AgCl 3 M as the reference electrode and fer-
rocene/ferrocenium couple (0.43 V in these conditions) as an internal
standard.
¶ The results on Me2pipdt are in agreement with those reported in ref. 6.
ꢀ Because of the presence of a strong broad peak centered near 1050 cm-1
-
for the BF4 anion, the peak of the n(CS) stretching vibration can not be
observed.
1 (a) F. Bigoli, P. Deplano, M. L. Mercuri, M. A. Pellinghelli, G. Pintus, A.
Serpe and E. F. Trogu, J. Am. Chem. Soc., 2001, 123, 1788; (b) A. Serpe,
F. Bigoli, M. C. Cabras, P. Fornasiero, M. Graziani, M. L. Mercuri, T.
Montini, L. Pilia, E. F. Trogu and P. Deplano, Chem. Commun., 2005,
1040; (c) A. Serpe, F. Artizzu, M. L. Mercuri, L. Pilia and P. Deplano,
Coord. Chem. Rev., 2008, 252, 1200.
2 F. Bigoli, P. Deplano, M. L. Mercuri, M. A. Pellinghelli, L. Pilia,
G. Pintus, A. Serpe and E. F. Trogu, Inorg. Chem., 2002, 41,
5241.
3 (a) S. Curreli, P. Deplano, C. Faulmann, A. Ienco, C. Mealli, M. L.
Mercuri, L. Pilia, G. Pintus, A. Serpe and E. F. Trogu, Inorg. Chem.,
2004, 43, 5069; (b) P. Deplano, M. L. Mercuri, A. Serpe and L.
Pilia, chapter 16 in the book The Chemistry of Metal Enolates, (Ed:
J. Zabicky), John Wiley & Sons, Chichester, 2009; (c) P. Deplano, L.
Pilia, D. Espa, M. L. Mercuri, A. Serpe, Coord. Chem. Rev., in press,
available on-line 10.1016/j.ccr.2009.12.022.
4 (a) B. J. Coe, in Comprehensive Coordination Chemistry II, (Eds: J. A.
McCleverty, T. J. Meyer), Elsevier-Pergamon, 2004, vol. 9, p. 621; (b) W.
L. Tan, W. Ji, J. L. Zuo, J. F. Bai, X. Z. You, Y. H. Lim, S. Yang, D. J.
Hagan and E. W. Van Stryland, Appl. Phys. B, 2000, 70, 809; (c) S. Di
Bella, Chem. Soc. Rev., 2001, 30, 355.
5 U. T. Mueller-Westerhoff, in Comprehensive Coordination Chemistry,
(Ed: G. Wilkinson), Pergamon Press, Oxford, 1987, 595.
6 V. N. Nemykin, J. G. Olsen, E. Perera and P. Basu, Inorg. Chem., 2006,
45, 3557.
Fig. 4 Spin density contour plot for [Fe(Me2pipto)3]2+ in the quintet spin
state (S = 2). The isodensity value is 0.0008 a.u. (OLYP/6-311G(d)).
7 K. R. Barnard, A. G. Wedd and E. R. Tiekink, Inorg. Chem., 1990, 29,
891 and references cited therein.
8 C. L. Beswick, J. M. Schulman and E. I. Stiefel, Prog. Inorg. Chem.,
2003, 52, 55 and references cited therein.
9 (a) F. Bigoli, C.-T. Chen, P. Deplano, M. L. Mercuri, M. A. Pellinghelli,
L. Pilia, G. Pintus and E. F Trogu, Chem. Commun., 2001, 2246; (b) P.
Deplano, M. L. Mercuri, L. Marchio`, L. Pilia, M. Salidu, A. Serpe
In conclusion, a novel sulfur-oxygen mixed donor ligand has
been prepared and characterized. The results and theoretical
calculations highlight the differences in the electronic structures
This journal is
The Royal Society of Chemistry 2010
Dalton Trans., 2010, 39, 8139–8142 | 8141
©