Helvetica Chimica Acta – Vol. 91 (2008)
1417
for 2a, 2b, and 2c were deposited as supplementary material with the Cambridge Crystallographic Data
Centre and allocated the deposition numbers CCDC 667772, 667770, and 667771, resp. These data can be
(2-Furyl)[(3aS,6R,7aR)-hexahydro-8,8-dimethyl-2,2-dioxido-3H-3a,6-methano[2,1]benzisothiazol-
1-yl]methanone (2a). To an ice-cold suspension of 60% NaH in mineral oil (70 mg, 1.75 mmol) in dry
toluene (3ml) under Ar, a soln. of (2 R)-bornane-10,2-sultam (250 mg, 1.16 mmol) in toluene (3ml) was
slowly added. After 1 h, a soln. of 2-furoyl chloride (0.23ml, 2.33mmol) in toluene (3ml) was added
dropwise over 30 min. The resulting mixture was stirred overnight at r.t. H2O was then added to the
mixture, and the aq. phase was extracted with AcOEt. The org. phase was dried (MgSO4) and
concentrated and the crude material purified by column chromatography (CC) (hexane/AcOEt 9 :1): 2a
(64%). M.p. 211 – 2138. [a]2D0 ¼ ꢀ89.5 (c ¼ 1.0, CHCl3). IR: 3147, 3014, 2999, 2966, 2934, 1659, 1469, 1340,
1311, 1303, 1190, 1116, 1115, 776, 757, 558, 486. 1H-NMR (500 MHz, CDCl3): 1.02 (s, 3 H); 1.27 (s, 3 H);
1.36 – 1.49 (m, 2 H); 1.87 – 1.94 (m, 2 H); 1.95 – 2.05 (m, 2 H); 2.08 – 2.13( m, 1 H); 3 .49 (d(AB), J ¼ 13.5,
1 H); 3.58 (d(AB), J ¼ 13.5, 1 H); 4.25 (dd, J ¼ 4.5, 7.75, 1 H); 6.53– 6.54 ( m, 1 H); 7.54 (dd, J ¼ 0.5, 3.5,
1 H); 7.64 – 7.66 (m, 1 H). 13C-NMR (125 MHz, CDCl3): 20.0 (q); 21.3( q); 26.4 (t); 33.3 (t); 38.4 (t); 45.2
(d); 47.8 (s); 48.2 (s); 53.8 (t); 66.1 (d); 112.0 (d); 120.4 (d); 146.0 (s); 147.1 (d); 157.5 (s). ESI-MS: 332.1
([M þ Na]þ), 641.1 ([2M þ Na]þ). HR-ESI-MS: 332.0935 (C15H19NNaO4Sþ; calc. 332.0932).
[(3aS,6R,7aR)-Hexahydro-8,8-dimethyl-2,2-dioxido-3H-3a,6-methano[2,1]benzisothiazol-1-yl]phe-
nylmethanone (2b). As described for 2a, with 60% NaH in mineral oil (70 mg, 1.75 mmol), (2R)-
bornane-10,2-sultam (250 mg, 1.16 mmol), and benzoyl chloride (0.27 ml, 2.33 mmol): 2b (96%). M.p.
148 – 1498. [a]2D0 ¼ ꢀ170.4 (c ¼ 1.0, CHCl3). IR: 3437, 2970, 2939, 2910, 2881, 1673, 1343, 1291, 1167, 1151,
1
1103, 1055, 728, 695, 556, 524. H-NMR (500 MHz, CDCl3): 1.02 (s, 3 H); 1.34 (s, 3H); 1.37 – 1.49 ( m,
2 H); 1.88 – 2.00 (m, 3H); 2.05 – 2.15 ( m, 2 H); 3.42 (d(AB), J ¼ 13.5, 1 H); 3.52 (d(AB), J ¼ 14, 1 H);
4.19 (dd, J ¼ 4.5, 7.25, 1 H); 7.42 – 7.45 (m, 2 H); 7.53– 7.57 ( m, 1 H); 7.76 (m, 2 H). 13C-NMR (125 MHz,
CDCl3): 19.9 (q); 21.3( q); 26.5 (t); 33.2 (t); 38.4 (t); 45.1 (d); 47.8 (s); 48.1 (s); 53.6 (t); 66.0 (d); 128.0
(2d); 129.5 (2d); 132.7 (d); 133.8 (s); 170.1 (s). ESI-MS: 342.2 ([M þ Na]þ), 661.3([2 M þ Na]þ). HR-
ESI-MS: 342.1147 (C17H21NNaO3Sþ; calc. 342.1140).
[(3aS,6R,7aR)-Hexahydro-8,8-dimethyl-2,2-dioxido-3H-3a,6-methano[2,1]benzisothiazol-1-yl](pyr-
idin-2-yl)methanone (2c). To picolinic acid (290 mg, 2.36 mmol), thionyl chloride (7 ml) was slowly
added, and the mixture was refluxed for 2 h. After cooling, toluene (15 ml) was added, and the soln. was
evaporated. The procedure was repeated two more times, to remove all the excess SOCl2. The obtained
picolinoyl chloride was used in the next step without further purification.
As described for 2a, with 60% NaH in mineral oil (70 mg, 1.75 mmol), (2R)-bornane-10,2-sultam
(250 mg, 1.16 mmol), and picolinoyl chloride [13]: 2c (51% yield. M.p. ¼ 87 – 908. [a]2D0 ¼ ꢀ184.3(c ¼ 1.0,
1
CHCl3). IR: 2960, 2883, 1675, 1330, 1305, 1170, 1116, 1139, 751, 557, 490. H-NMR (500 MHz, CDCl3):
1.02 (s, 3 H); 1.32 (s, 3H); 1.37 – 1.49 ( m, 2 H); 1.87 – 2.03( m, 5 H); 3 .43 d((AB), J ¼ 13.5, 1 H); 3.56
(d(AB), J ¼ 13.5, 1 H); 4.39 (t, J ¼ 7, 1 H); 7.45 – 7.48 (m, 1 H); 7.82 – 7.87 (m, 2 H); 8.72 – 8.73( m, 1 H).
13C-NMR (125 MHz, CDCl3): 20.0 (q); 21.9 (q); 26.3( t); 33.6 (t); 39.2 (t); 45.5 (d); 47.7 (s); 48.6 (s); 53.4
(t); 66.7 (d); 124.6 (d); 126.4 (d); 136.8 (d); 148.8 (d); 151.1 (s); 167.0 (s). ESI-MS: 343.1 ([M þ Na]þ),
663.2 ([2M þ Na]þ). HR-ESI-MS: 343.1079 (C16H20N2NaO3Sþ; calc. 343.1092).
REFERENCES
[1] a) W. Oppolzer, I. Rodriguez, J. Blagg, G. Bernardinelli, Helv. Chim. Acta 1989, 72, 123; b) W.
Oppolzer, C. Chapuis, G. Bernardinelli, Helv. Chim. Acta 1984, 67, 1397.
[2] a) C. Chapuis, J.-Y de Saint Laumer, M. Marty, Helv. Chim. Acta 1997, 80, 146; b) T. Bauer, C.
Chapuis, J. Kiegiel, J. W. Krajewski, K. Piechota, Z. Urbanczyk-Lipkowska, J. Jurczak, Helv. Chim.
Acta 1996, 79, 1059.
[3] T. Bauer, C. Chapuis, A. Jezewski, J. Kozak, J. Jurczak, Tetrahedron: Asymmetry 1996, 7, 1391.
[4] B. H. Kim, D. P. Curran, Tetrahedron 1993, 49, 293.
[5] J. Romanski, J. Juzwik, C. Chapuis, M. Asztemborska, J. Jurczak, Tetrahedron: Asymmetry 2007, 18,
865.
[6] J. Romanski, J. Juzwik, C. Chapuis, J. Jurczak, Helv. Chim. Acta 2007, 90, 2116.