766
R. A. Fairhurst et al.
LETTER
5: White amorphous foam; 1.07 g; 31P NMR (CDCl3, 162
MHz): = 32.52 ppm; 1H NMR (CDCl3, 400 MHz): = 9.67
(br s, 1 H), 9.52 (s, br, 1 H), 7.69–7.61 (m, 4 H), 7.45–7.34
(m, 7 H), 7.13 (s, 1 H), 6.10–6.02 (m, 1 H, H1 upper sugar),
5.50 (d, J = 2 Hz, 1 H, H1 lower sugar), 4.26–3.64 (m, 8 H),
3.50 (s, 3 H), 3.36–3.17 (m, 3 H), 2.74–2.61 (m, 1 H), 2.51–
2.42 (m, 1 H), 2.32–2.20 (m, 1 H), 2.04–1.82 (m, 2 H), 1.84
(s, 3 H), 1.74–1.59 (m, 1 H), 1.58 (s, 3 H), 1.27 (t, J = 7 Hz,
3 H), 1.04 (s, 9 H). MS (ES+): m/z (%) = 840(27) [M + H],
862(100) [M + Na].
Acknowledgement
We would like to acknowledge and thank Dr. U. Pieles and Dr. F.
Natt for oligonucleotide synthesis as well as Dr. S. M. Freier (Isis
Pharmaceuticals) for performing hybridisation experiments.
References
(1) New address: Novartis Horsham Research Centre,
Wimblehurst Road, Horsham, West Sussex, RH12 5AB,
UK.
6: White amorphous foam; 0.94 g; 31P NMR (CDCl3, 162
MHz): = 32.81 ppm; 1H NMR (CDCl3, 400 MHz): = 9.38
(br s, 1 H), 9.17 (s, br, 1 H), 7.70–7.62 (m, 4 H), 7.44–7.34
(m, 7 H), 7.13 (s, 1 H), 6.14–6.06 (m, 1 H, H1 upper sugar),
5.55 (d, J = 2 Hz, 1 H, H1 lower sugar), 4.24–3.64 (m, 8 H),
3.51 (s, 3 H), 3.50–3.18 (m, 3 H), 2.80–2.68 (m, 1 H), 2.50–
2.39 (m, 1 H), 2.34–2.23 (m, 1 H), 2.01–1.84 (m, 1 H), 1.84
(s, 3 H), 1.77–1.58 (m, 2 H), 1.61 (s, 3 H), 1.20–1.10 (m, 3
H), 1.04 (s, 9 H). MS (ES+): m/z (%) = 840(8) [M + H],
862(100) [M + Na].
(2) (a) Wahlestedt, C.; Good, L. Curr. Opin. Drug Discov. Dev.
1999, 2, 142. (b) Bennett, C. F. Exp. Opin. Invest. Drugs
1999, 8, 237. (c) Ma, D. D. F.; Rede, T.; Naqvi, N. A.; Cook,
P. D. Biotechnol. Annu. Rev. 2000, 5, 155. (d) Bennett, C.
F.; Butler, M.; Cook, P. D.; Geary, R. S.; Levin, A. A.;
Mehta, R.; Teng, C.-L.; Deshmukh, H.; Tillman, L.; Hardee,
G. Gene Ther.; Marcel Dekker Inc.: New York, 2000, 305.
(e) Uhlmann, E. Curr. Opin. Drug Discovery Dev. 2000, 3,
203. (f) Galderisi, U.; Cipollaro, M.; Cascino, A. Emerging
Drugs 2001, 6, 69.
(3) (a) Freier, S. M.; Altmann, K.-H. Nucleic Acids Res. 1997,
25, 4429. (b) Altmann, K.-H.; Cuenoud, B.; Von Matt, P. In
Applied Antisense Oligonucleotide Technology; Krieg, A.
M.; Stein, C. A., Eds.; Wiley-Liss Inc.: New York, 1998.
(c) Egli, M.; Gryaznov, S. M. Cell. Mol. Life Sci. 2000, 57,
1440. (d) Engels, J. W.; Uhlmann, E. Pharm. Aspects
Oligonucleotides 2000, 35. (e) An, H.; Wang, T.; Maier, M.
A.; Manoharan, M.; Ross, B. S.; Cook, P. D. J. Org. Chem.
2001, 66, 2789.
(4) (a) Crooke, S. T.; Lemonidis, K. M.; Neilson, L.; Griffey, R.;
Lesnik, E. A.; Monia, B. P. Biochem. 1995, 312, 599.
(b) McKay, R. A.; Miraglia, L. J.; Cummins, L. L.; Owens,
S. R.; Sasmor, H.; Dean, N. M. J. Biol. Chem. 1999, 274,
1715. (c) Cramer, H.; Pfleiderer, W. Nuleosides,
Nucleotides, Nucleic Acids 2000, 19, 1765. (d) Malchere,
C.; Verheijien, J.; Van Der Laan, S.; Bastide, L.; Van Boom,
J.; Lebleu, B.; Robbins, I. Antisense Nucleic Acid Drug Dev.
2000, 10, 463. (e) Kværnø, L.; Wengel, J. Chem. Commun.
2001, 1419.
(12) (a) Kim, C. H.; Marquez, V. E.; Broder, S.; Mitsuya, H.;
Driscoll, J. S. J. Med. Chem. 1987, 30, 862. (b) Ross, B. S.;
Springer, R. H.; Vasquez, G.; Andrews, R. S.; Cook, P. D.;
Acevedo, O. L. J. Heterocycl. Chem. 1994, 31, 765.
(13) Reaction conditions were as described in ref.5 A reaction
carried out on a 1.46 mmol scale gave;
13: White amorphous foam; 1.54 g; 31P NMR (CDCl3, 162
MHz): = 32.70 ppm; 1H NMR (CDCl3, 400 MHz): = 8.62
(s, 1 H), 8.15 (d, 2 H, J = 7 Hz), 7.58–7.44 (m, 8 H), 7.35–
7.31 (m, 1 H), 7.30–7.17 (m, 16 H), 7.08 (s, 1 H), 5.96–5.90
(m, 1 H, H1 upper sugar), 5.42 (d, 1 H, J = 2 Hz, H1 lower
sugar), 3.97–3.89 (m, 1 H), 3.86–3.77 (m, 2 H), 3.69–3.53
(m, 4 H), 3.10 (s, 3 H), 2.98–2.81 (m, 2 H), 2.76–2.63 (m, 1
H), 2.59–2.48 (m, 1 H), 2.29–2.20 (m, 1 H), 2.03–1.94 (m, 1
H), 1.91 (s, 3 H), 1.76–1.60 (m, 1 H), 1.44 (s, 3 H), 1.38–1.14
(m, 1 H), 1.07–0.99 (m, 3 H), 0.94 (s, 9 H), 0.91 (s, 9 H).
Minor (SP)-diastereoisomer; 31P NMR (CDCl3, 162 MHz):
= 31.71 ppm; 1H NMR (CDCl3, 400 MHz): key
distinguishing resonances = 5.90–5.83 (m, 1 H, H1 upper
sugar), 5.29 (d, 1 H, J = 2 Hz, H1 lower sugar).
(5) Fairhurst, R. A.; Collingwood, S. P.; Lambert, D.; Taylor, R.
J. Synlett 2001, 467.
(6) Fairhurst, R. A.; Collingwood, S. P.; Lambert, D. Synlett
2001, 473.
(14) (a) Oligonucleotides were prepared using an ABI 390 DNA
synthesiser following standard phosphoramidite chemistry,
according to: Gait:, M. J. Oligonucleotide Synthesis: A
Practical Approach; IRL Press: Oxford, 1984. (b) For the
steps involving incorporation of modified dimers, double
couplings with double reaction times were employed.
(15) (a) The thermal denaturation of DNA/RNA hybrids was
performed at 260 nm using a Gifford Response II
(7) (a) Griffey, R. H.; Lesnik, E.; Freier, S.; Sanghvi, Y. S.;
Teng, K.; Kawasaki, A.; Guinosso, C.; Wheeler, P.; Mohan,
V.; Cook, P. D. ACS Symp. Ser. 1994, 580, 212.
(b) Manoharan, M. Biochim. Biophys. Acta 1999, 1489, 117.
(8) (a) Inoue, H.; Hayase, Y.; Imura, A.; Iwai, S.; Miura, K.;
Ohtsuka, E. Nucleic Acids Res. 1987, 15, 6131.
(b) Lamond, A. I.; Sproat, B. S. FEBS Lett. 1993, 325, 123.
(9) (a) De Mesmaeker, A.; Lesueur, C.; Bévièrre, M.-O.;
Waldner, A.; Fritsch, V.; Wolf, V. F. Angew. Chem., Int. Ed.
Engl. 1996, 35, 2790. (b) De Mesmaeker, A.; Lebreton, J.;
Jouanno, C.; Fritsch, V.; Wolf, R. M.; Wendeborn, S. Synlett
1997, 1287. (c) Pfundheller, H. M.; Wengel, J. Bioorg. Med.
Chem. Lett. 1999, 9, 2667.
spectrophotometer (Ciba-Corning Diagnostics Corp.,
Oberlin, OH) absorbance vs. temperature profiles were
measured at 4 m of each strand in 10 mM phosphate pH 7.0
(Na salts), 100 mM total (Na+) 0.1 mM EDTA. Tm’s were
obtained from fits of absorbance vs. temperature curves to a
two-state model with linear slope baselines: Freier, S. M.;
Albergo, T. D.; Turner, D. H. Biopolymers 1982, 22, 1107.
(b) All values are averages of at least three experiments. The
absolute error of the Tm values is 0.5 °C.
(10) Huang, J.; McElroy, E. B.; Widlanski, T. S. J. Org. Chem.
1994, 59, 3520.
(16) Martin, P. Helv. Chim. Acta 1995, 78, 486.
(17) (a) Pless, R. C.; Ts’o, P. O. P. Biochemistry 1977, 16, 1239.
(b) Summers, M. F.; Powell, C.; Egan, W.; Byrd, R. A.;
Wilson, W. D.; Zon, G. Nucleic Acids Res. 1986, 14, 7421.
(c) Ferguson, D. M.; Kollman, P. A. Antisense Research and
Development 1991, 1, 243.
(18) Sanghvi, Y. S.; Hoke, G. D.; Freier, S. M.; Zounes, M. C.;
Gonzalez, C.; Cummins, L.; Sasmor, H.; Cook, P. D. Nucleic
Acids Res. 1993, 21, 3197.
(11) Reaction conditions were as described in ref.5 Flash column
chromatography was performed using Merck Silica Gel 60
(0.040–0.063 mm). NMR spectra were recorded with a
Brucker AC400 instrument. Key distinguishing 1H
resonances for each diastereoisomer are assigned. 31P NMR
shifts are given as ppm values relative to phosphoric acid.
Mass spectroscopy was carried out using a Fisons
Instruments VG Platform II spectrometer. A reaction carried
out on a 3.11 mmol scale gave;
Synlett 2002, No. 5, 763–766 ISSN 0936-5214 © Thieme Stuttgart · New York