Notes and references
{ Crystal data for MOF-Co/Zn-5a: C53H41.5CoN7O9.5Zn2, M = 1118.10,
˚
monoclinic, space group P21/n, a = 15.229(4) A, b = 8.796(2) A, c =
˚
3
˚
˚
38.650(11) A, a = 90u, b = 89.977(5)u, c = 90u, V = 5177(2) A , T =
100(2) K, Z = 4, 43650 reflections measured, 10531 unique which were used
in all data, (Rint = 0.0841), R1 = 0.0787 (I . 2s(I)), GOF = 1.042.
Crystal data for MOF-Co/Zn-5b: C55.5H46CoN7.5O7.5Zn1.5, M =
¯
˚
˚
1094.98, triclinic, space group P1, a = 13.626(3) A, b = 14.766(3) A,
˚
c = 17.357(4) A, a = 81.062(4)u, b = 81.660(4)u, c = 75.534(4)u, V =
3
3319.8(12) A , T = 100(2) K, Z = 2, 36922 reflections measured, 13380
˚
unique which were used in all data, (Rint = 0.0800), R1 = 0.0605 (I . 2s(I)),
GOF = 0.906.
CCDC 656116–656117. For crystallographic data in CIF format see
DOI: 10.1039/b712118k
§ Alternative analysis of MOF-Co/Zn-5a topology. iSBU-based MOF
classification involves recognition of simple patterns (e.g., ladders, helices)
of coordinating carboxylate groups in the iSBUs. Although this approach
is not always applicable due to the complex nature of some iSBUs, those in
MOF-Co/Zn-5a can be simplified as 6-fold helices which in turn are cross-
linked by the metalloligands (Fig. S6).{ This gives rise to a new binodal
3-connected net that has not, to the best of our knowledge, been observed
in other MOFs but is recognized as net sqc946 (vertex symbols,
(6?6?122)(6?122?122); coordination sequences, 3, 6, 10, 18, 32, 52, 73, 98,
125, 156 and 3, 6, 11, 18, 31, 52, 73, 98, 125, 156) in the EPINET database
(http://epinet.anu.edu.au/).
Fig. 4 Simulated (red) and experimental (black) XRD pattern for MOF-
Co/Zn-5a. The pattern obtained from the reaction product using L-[Co(4-
cpdpm)3] is shown in blue, indicating an amorphous material.
when viewed along the b-axis (Fig. 2, right). The resemblance of
the MOFs is due to the similar connectivity found in the SBUs of
these MOFs.
1 M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keeffe
and O. M. Yaghi, Acc. Chem. Res., 2001, 34, 319–330.
2 M. O’Keeffe and O. M. Yaghi, J. Solid State Chem., 2005, 178, v–vi.
3 S. Kitagawa, R. Kitaura and S. Noro, Angew. Chem., Int. Ed., 2004, 43,
2334–2375.
4 S. Decurtins, H. W. Schmalle, R. Pellaux, P. Schneuwly and A. Hauser,
Inorg. Chem., 1996, 35, 1451–1460.
5 R. Kitaura, G. Onoyama, H. Sakamoto, R. Matsuda, S. Noro and
S. Kitagawa, Angew. Chem., Int. Ed., 2004, 43, 2684–2687.
6 B. L. Chen, F. R. Fronczek and A. W. Maverick, Inorg. Chem., 2004,
43, 8209–8211.
7 D. W. Smithenry, S. R. Wilson and K. S. Suslick, Inorg. Chem., 2003,
42, 7719–7721.
8 S.-H. Cho, B. Ma, S. T. Nguyen, J. T. Hupp and T. E. Albrecht-
Schmitt, Chem. Commun., 2006, 2563–2565.
9 K. S. Suslick, P. Bhyrappa, J. H. Chou, M. E. Kosal, S. Nakagaki,
D. W. Smithenry and S. R. Wilson, Acc. Chem. Res., 2005, 38, 283–291.
10 C. Bru¨ckner, Y. Zhang, S. J. Rettig and D. Dolphin, Inorg. Chim. Acta,
1997, 263, 279–286.
11 S. R. Halper and S. M. Cohen, Chem.–Eur. J., 2003, 9, 4661–4669.
12 S. R. Halper and S. M. Cohen, Inorg. Chem., 2005, 44, 486–488.
13 S. R. Halper, L. Do, J. R. Stork and S. M. Cohen, J. Am. Chem. Soc.,
2006, 128, 15255–15268.
With both a 2-D and 3-D MOF in hand, we sought to generate
homochiral structures by exploiting the chirality of the octahedral,
tris(chelate) metal center of the [Co(4-cpdpm)3] metalloligand.
Resolution of rac-[Co(4-cpdpm)3] was performed with (2)-
cinchonidine using a published procedure.19 Enantiopurity of the
resolved metalloligand was confirmed by chiral HPLC.19
Subjecting enantiopure D-[Co(4-cpdpm)3] or L-[Co(4-cpdpm)3] to
identical reaction conditions as those used for MOF-Co/Zn-5a
or MOF-Co/Zn-5b produced amorphous, red precipitates.
Examination of these solids by X-ray powder diffraction (XRD)
showed that they had no significant crystallinity (Fig. 4, Fig. S4).{
Further validation that these powders were not the desired MOFs
was obtained by thermal gravimetric analysis (TGA). While both
MOF-Co/Zn-5a and MOF-Co/Zn-5b are stable up to y400 uC,
the amorphous solids obtained from L-[Co(4-cpdpm)3] showed
significant weight losses at temperatures y100 uC (Fig. S5).{
The latter finding is important in the context of using
metalloligands in the preparation of chiral MOFs and the capacity
of such systems to produce predictable structure types. When
examining the structures of MOF-Co/Zn-5a or MOF-Co/Zn-5b,
there is no obvious topological incompatibility with the use of a
homochiral metalloligand; indeed similar metalloligands have been
found to form homochiral MOFs.20 However, other factors, such
as differences in solubility of the enantiopure versus racemic
metalloligand, may prevent the direct substitution of one for the
other under solvothermal reaction conditions.
14 N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe and
O. M. Yaghi, J. Am. Chem. Soc., 2005, 127, 1504–1518.
15 Y. L. Liu, J. F. Eubank, A. J. Cairns, J. Eckert, V. C. Kravtsov,
R. Luebke and M. Eddaoudi, Angew. Chem., Int. Ed., 2007, 46,
3278–3283.
16 H. K. Chae, D. Y. Siberio-Pe´rez, J. Kim, Y. Go, M. Eddaoudi,
A. J. Matzger, M. O’Keeffe and O. M. Yaghi, Nature, 2004, 427,
523–527.
17 Y. Ke, D. J. Collins, D. Sun and H.-C. Zhou, Inorg. Chem., 2006, 45,
1897–1899.
18 S. Q. Ma, D. F. Sun, M. Ambrogio, J. A. Fillinger, S. Parkin and
H. C. Zhou, J. Am. Chem. Soc., 2007, 129, 1858–1859.
19 S. G. Telfer and J. D. Wuest, Chem. Commun., 2007, 3166–3168.
20 D. L. Murphy, M. R. Malachowski, C. F. Campana and S. M. Cohen,
Chem. Commun., 2005, 5506–5508.
21 K. Barthelet, J. Marrot, D. Riou and G. Fe´rey, Angew. Chem., Int. Ed.,
2002, 41, 281–284.
22 N. L. Rosi, M. Eddaoudi, J. Kim, M. O’Keeffe and O. M. Yaghi,
Angew. Chem., Int. Ed., 2002, 41, 284–287.
23 E. V. Anokhina, M. Vougo-Zanda, X. Wang and A. J. Jacobson, J. Am.
Chem. Soc., 2005, 127, 15000–15001.
24 X. Wang, L. Liu and A. J. Jacobson, Angew. Chem., Int. Ed., 2006, 45,
6499–6503.
In summary, two new MOFs based on the metalloligand rac-
[Co(4-cpdpm)3] have been prepared and characterized. Both
MOFs contain unusual structural motifs, one involving an iSBU
and the other a trinuclear zinc(II) SBU. When preparing these
MOFs, we find that the products are obtained only when the
racemate is used. Under identical reaction conditions enantiopure
metalloligands lead only to amorphous solids. These findings are
significant within the context of designing and synthesizing new
MOFs and their homochiral analogues.
This journal is ß The Royal Society of Chemistry 2007
Chem. Commun., 2007, 4881–4883 | 4883