Organic Letters
Letter
(2) (a) Lucet, D.; Le Gall, T.; Mioskowski, C. The Chemistry of
Vicinal Diamines. Angew. Chem., Int. Ed. 1998, 37, 2580−2627.
(b) Ballini, R.; Petrini, M. The Nitro to Carbonyl Conversion (Nef
reaction): New Perspective for a Classical Transformation. Adv. Synth.
Catal. 2015, 357, 2371−2402.
(3) For illustrative examples of aimed syntheses featuring aza-Henry
reaction as one of the key steps, see: (a) Jakubec, P.; Hawkins, A.;
Felzmann, W.; Dixon, D. J. Total Synthesis of Manzamine A and
Related Alkaloids. J. Am. Chem. Soc. 2012, 134, 17482−17485.
(b) Clark, P. G. K.; Vieira, L. C. C.; Tallant, C.; Fedorov, O.;
Singleton, D. C.; Rogers, C. M.; Monteiro, O. P.; Bennett, J. M.;
prediction of the product syn/anti-stereochemistry, and
broader crystallographic investigations might be needed. On
the basis of the obtained data, a preferential crystallization in
syn-configuration seems to be more presumable.
In summary, we have discovered a highly stereoselective
crystallization-driven aza-Henry reaction, applicable to a broad
range of substrates. The target compounds are readily isolated
by filtration. The method features imine species generated in
situ, eliminating the need for preparation of these moisture-
sensitive compounds in an extra step. In contrast with most of
the previous records, only 1 equiv of the nitro compound was
sufficient to obtain the corresponding β-nitroamines in
satisfactory yields. The method is applicable to sterically
demanding α,α-disubstituted nitro compounds as well as α-
prochiral substrates, yielding either syn- or anti-stereoisomers
in high purities. Moreover, synthesis of β-nitroamines with a
syn-configuration has scarcely been reported, and we believe
that the protocol described herein provides an attractive
synthetic tool that fills this gap and holds promise for various
future applications.
́
Baronio, R.; Muller, S.; Daniels, D. L.; Mendez, J.; Knapp, S.;
̈
Brennan, P. E.; Dixon, D. J. LP99: Discovery and Synthesis of the
First Selective BRD7/9 Broandersonmodomain Inhibitor. Angew.
Chem., Int. Ed. 2015, 54, 6217−6221. (c) Lin, L.-Z.; Fang, J.-M. Total
Synthesis of Anti-Influenza Agents Zanamivir and Zanaphosphor via
Asymmetric Aza-Henry Reaction. Org. Lett. 2016, 18, 4400−4403.
(4) Adams, H.; Anderson, J. C.; Peace, S.; Pennell, A. M. K. The
Nitro-Mannich Reaction and Its Application to the Stereoselective
Synthesis of 1,2-Diamines. J. Org. Chem. 1998, 63, 9932−9934.
̈
(5) Yamada, K.-i.; Harwood, S. J.; Groger, H.; Shibasaki, M. The
First Catalytic Asymmetric Nitro-Mannich-Type Reaction Promoted
by a New Heterobimetallic Complex. Angew. Chem., Int. Ed. 1999, 38,
3504−3506.
ASSOCIATED CONTENT
* Supporting Information
■
(6) For illustrative examples, see: (a) Ruano, J. L. G.; Topp, M.;
S
́
́
́
Lopez-Cantarero, J.; Aleman, J.; Remuin
̃
an, M. J.; Cid, M. B.
The Supporting Information is available free of charge on the
Asymmetric Aza-Henry Reactions from N-p-Tolylsulfinylimines. Org.
Lett. 2005, 7, 4407−4410. (b) Pindi, S.; Kaur, P.; Shakya, G.; Li, G.
N-Phosphinyl Imine Chemistry (I): Design and Synthesis of Novel N-
Phosphinyl Imines and their Application to Asymmetric aza-Henry
Reaction. Chem. Biol. Drug Des. 2011, 77, 20−29. (c) Yun, H.-S.; Lee,
H.-J.; Chang, D.-H.; Lee, S.-J.; Kim, S. H.; Kim, J. S.; Cho, C.-W.
Asymmetric Synthesis of Chiral 2-Alkyl-3,3-Dinitro-1-Tosylazetidines.
Bull. Korean Chem. Soc. 2015, 36, 1524−1527.
Experimental details, characterization data, copies of
Crystallographic data for 5, 11·1.5H2O, 13, 16, 20, and
(7) For representative examples, see: (a) Nishiwaki, N.; Knudson, K.
Accession Codes
̈
R.; Gothelf, K. V.; Jorgensen, K. A. Catalytic Enantioselective
Addition of Nitro Compounds to Imines − A Simple Approach for
the Synthesis of Optically Active β-Nitro-α-Amino Esters. Angew.
Chem., Int. Ed. 2001, 40, 2992−2995. (b) Handa, S.; Gnanadesikan,
V.; Matsunaga, S.; Shibasaki, M. syn-Selective Catalytic Asymmetric
Nitro-Mannich Reactions Using a Heterobimetalic Cu-Sm-Schiff Base
Complex. J. Am. Chem. Soc. 2007, 129, 4900−4901. (c) Choudhary,
M. K.; Tak, R.; Kureshy, R. I.; Ansari, A.; Khan, N.-u. H.; Abdi, S. H.
R.; Bajaj, H. C. Enantioselective aza-Henry reaction for the synthesis
of (S)-levamisole using efficient recyclable chiral Cu(II)-amino
alcohol derived complexes. J. Mol. Catal. A: Chem. 2015, 409, 85−
93. (d) Dudek, A.; Mlynarski, J. Iron-Catalyzed Asymmetric Nitro-
Mannich Reaction. J. Org. Chem. 2017, 82, 11218−11224. (e) Liu, S.;
Gao, W.-C.; Miao, Y.-H.; Wang, M.-C. Dinuclear Zinc-AzePhenol
Catalyzed Asymmetric Aza-Henry Reaction of N-Boc Imines and
Nitroalkanes under Ambient Conditions. J. Org. Chem. 2019, 84,
2652−2659.
(8) Illustrative examples: (a) Fini, F.; Sgarzani, V.; Pettersen, D.;
Herrera, R. P.; Bernardi, L.; Ricci, A. Phase-Transfer-Catalyzed
Asymmetric Aza-Henry Reaction Using N-Carbamoyl Imines
Generated In Situ from α-Amido Sulfones. Angew. Chem., Int. Ed.
2005, 44, 7975−7978. (b) Wang, C.-J.; Dong, X.-Q.; Zhang, Z.-H.;
Xue, Z.-Y.; Teng, H.-L. Highly anti-Selective Asymmetric Nitro-
Mannich Reactions Catalyzed by Bifunctional Amine-Thiourea-
Bearing Multiple Hydrogen-Bonding Donors. J. Am. Chem. Soc.
2008, 130, 8606−8607. (c) Takada, K.; Nagasawa, K. Enantiose-
lective Aza-Henry Reaction with Acyclic Guanidine-Thiourea Bifunc-
tional Organocatalyst. Adv. Synth. Catal. 2009, 351, 345−347.
(d) Davis, T. A.; Wilt, J. C.; Johnston, J. N. Bifunctional Asymmetric
Catalysis: Amplification of Brønsted Basicity Can Orthogonally
Increase the Reactivity of a Chiral Brønsted Acid. J. Am. Chem. Soc.
2010, 132, 2880−2882. (e) Anderson, J. C.; Koovits, P. J. An
enantioselective tandem reduction/nitro-Mannich reaction of nitro-
alkenes using a simple thiourea organocatalyst. Chem. Sci. 2013, 4,
tallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
́
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the Slovak Research and
Development Agency under Contract No. APVV-16-0258.
The crystal structures were solved with the support of the
project “University Science Park of STU Bratislava” (ITMS
Project No. 26240220084) cofounded by the European
Regional Development Fund.
REFERENCES
■
(1) For a recent review, see: Noble, A.; Anderson, J. C. Nitro-
Mannich Reaction. Chem. Rev. 2013, 113, 2887−2939.
D
Org. Lett. XXXX, XXX, XXX−XXX