10.1002/chem.201702877
Chemistry - A European Journal
FULL PAPER
added and the mixture was stirred in the air for 3 min. 0.5 mL of the organic
phase were removed filtered over a small pad of MgSO4 and silica, which
was then rinsed with 1 mL of ethylacetate. 1 µl of tetradecane were added
as the internal standard to determine the yields (GC). For the determin-
ation of the response factors of the substrates and the products, four differ-
rent concentrations were measured by GC. Products of several experi-
ments with identical substrates were sampled, purified by preparative
HPLC and characterized by NMR spectroscopy.
1557018-1557024 contain the supplementary crystallographic data for this
paper. These data can be obtained free of charge from The Cambridge
Acknowledgements
This work was supported by the German research foundation
DFG within the transregional collaborative research center
SFB/TRR 88 “Cooperative effects in homo and heterometallic
complexes” (3MET) and by the state research center OPTIMAS.
A. F. thanks the Cusanuswerk for supporting her PhD thesis with
a grant.
X-ray structure analyses: Crystal data and refinement parameters for
compounds 2,7a, 9a-b, 9d, 9d-Me and 11b are collected in Table 7. The
structures were solved using direct methods (SIR92 33), completed by
subsequent difference Fourier syntheses, and refined by full-matrix least-
squares procedures.34 For compounds 2, 9b, 9d, 9d-Me and 11b, semi-
empirical absorption corrections from equivalents (Multiscan) were carried
out, while analytical numeric absorption corrections were applied on com-
plexes 7a and 9a.35 All non-hydrogen atoms were refined with anisotropic
displacement parameters. In the structure of complex 9b, one H2O mole-
cule was co-crystallzied with one unit of the target main structure. The
hydrogen atoms (H1A and H1B) attached to the oxygen atom O1, were
located in the difference Fourier synthesis, and were refined semi-freely
with the help of a distance restraint, while constraining their U-values to
1.2 times the U(eq) value of O1. All the other hydrogen atoms were placed
in calculated positions and refined by using a riding model. CCDC
Keywords: N-heterocyclic carbene • aminopyrimidine •
palladium • cyclometallation • Suzuki-Miyaura cross-coupling
[1]
[2]
L. Tschugajeff, M. Skanawy-Grigorjewa, A. Posnjak, J. Russ. Chem. Soc.
1915, 447, 776.
4305; b) F. Menges, J. Lang, Y. Nosenko, C. Kerner, M. Gaffga, L. Taghi-
zadeh Ghoochany, W. R. Thiel, C. Riehn, G. Niedner-Schatteburg, J.
Phys. Chem. A 2017, 121, 4422–4434.
a) G. Rouschias, B. L. Shaw, Chem Commun. 1970, 183. b) A. Burke, A.
L. Balch, J. H. Enemark, J. Am. Chem. Soc. 1970, 92, 2555. c) W. M.
Butler, J. H. Enemark, J. Parks, A. L. Balch, Inorg. Chem. 1973, 12, 451.
E. O. Fischer, A. Maasböl, Angew. Chem. 1964, 76, 645.
R. R. Schrock, J. Am. Chem. Soc. 1974, 96, 6796.
[15] a) R. F. R. Jazzaar, S. A. Macgregor, M. F. Mahon, S. P. Richards, M. K.
Whittlesey, J. Am. Chem. Soc. 2002, 124, 4944; b) S. Burling, B. M.
Paine, D. Nama, V. S. Brown, M. F. Mahon, T. J. Prior, P. S. Pregosin,
M. K. Whittlesey, J. M. J. Williams, J. Am. Chem. Soc. 2007, 129, 1987;
c) R. A. Diggle, S. A. Macgregor, M. K. Whittlesey, Organometallics.
2008, 27, 617.
[3]
[4]
[5]
A. J. Arduengo III, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113,
361.
[6]
[7]
a) K K. Irikura, W. A. Goddard III, J. L. Beauchamp, J. Am. Chem. Soc.
1992, 114, 48. b) D. Feller, W. T. Borden, E. R. Davidson, Chem. Phys.
Lett. 1980, 71, 22.
[16] a) L. S. Jongbloed, B. de Bruin, J. N. H. Reek, M. Lutz, J. I. van der Vlugt,
Catal. Sci. Technol. DOI: 10.1039/C5CY01505G; b) G. Choi, H. Tsurugi,
K. Mashima, J. Am. Chem. Soc. 2013, 135, 13149; c) P. Bhattacharya,
J. A. Krause, H. Guan, J. Am. Chem. Soc. 2014, 136, 11153; d) C. Kerner,
S.-D. Straub, Y. Sun, W. R. Thiel, Eur. J. Org. Chem. 2016, 3060; e) C.
Boulho, J.-P. Djukic, Dalton Trans. 2010, 8893.
a) D. J. Nelson, S. P. Nolan. Chem. Soc. Rev. 2013, 42, 6723; b) T.
Dröge, F. Glorius. Angew. Chem. Int. Ed. 2010, 49, 6940; c) D. Nemcsok,
K. Wichmann, G. Frenking, Organometallics. 2004, 23, 3640. d) C.
Böhme, G. Frenking. J. Am. Chem. Soc. 1996, 118, 2039; e) A. J.
Arduengo III, H. V. R. Dias, D. A. Dixon, R. L. Harlow, W. T. Kloster, T.
F. Koetzle, J. Am. Chem. Soc. 1994, 116, 6812. f) R. A. Kelly III, H. Cla-
vier, S. Giudice, N. M. Scott, E. D. Stevens, J. Bordner, I. Samardjiev, C.
D. Hoff, L. Cavallo, S. P. Nolan, Organometallics 2008, 27, 202. g) A.
Gómez-Suárez, D. J. Nelson, S. P. Nolan, Chem. Commun. 2017, 53,
2650. h) H. Clavier, S. P. Nolan, Chem. Commun. 2010, 46, 841. i) H.
Clavier, S. P. Nolan, Chem. Commun. 2010, 46, 9260.
[17] K. Ghatak, M. Mane, K. Vanka, ACS Catal. 2013, 3, 920-927.
[18] a) S. Farsadpour, L. Taghizadeh Ghoochany, Y. Sun, W. R. Thiel, Eur.
J. Inorg. Chem. 2011, 4603; b) S. Farsadpour, L. Taghizadeh Ghoochany,
S. Shylesh, G. Dörr, A. Seifert, S. Ernst, W. R. Thiel, ChemCatChem
2012, 4, 395.
[19] D. Hackenberger, B. Song, M. F. Grünberg, S. Farsadpour, F. Menges,
H. Kelm, C. Groß, T. Wolff, G. Niedner-Schatteburg, W. R. Thiel, L. J.
Gooßen, ChemCatChem 2015, 7, 3579.
[8]
[9]
a) H.-W. Wanzlick, H.-J. Schönherr, Angew. Chem. Int. Ed. 1968, 7, 141.
b) K. Öfele, J. Organomet. Chem. 1968, 12, P42.
[20] D. D. Davey M. Adler, D. Arnaiz, K. Eagen, S. Erickson, W. Guilford, M.
Kenrick, M. M. Morrissey, M. Ohlmeyer, G. Pan, V. M. Paradkar, J. Par-
kinson, M. Polokoff, K. Saionz, C. Santos, B. Subramanyam, R. Vergona,
R. G. Wei, M. Whitlow, B. Ye, Z. S. Zhao, J. J. Devlin, G. Phillips, J. Med.
Chem. 2007, 50, 1146.
a) W. A. Hermann, Angew. Chem. 2002, 114, 1342; b) W. Strohmeier, F.
J. Müller, Chem. Ber. 1967, 100, 2812; c) C. A. Tolman, Chem. Rev.
1977, 77, 313.
[10] I. Huang, H.-J. Schanz, E. D. Stevens, S. P. Nolan, Organometallics.
1999, 18, 2370.
[21] a) T. Taldone, Y. Kang, H. J. Patel, M. R. Patel, P. D. Patel, A. Rodina,
A. Gozman, R. Maharaj, C. C. Clement, J. Med. Chem. 2014, 57, 1208;
b) G. Chiosis, T. Taldone, A. Rodina, P. Patel, Y. Kang, WO2010061903
A1, 2011;. c) D. Taniyama, K. Kano, K. Ishibashi, T. Endoh, WO
2010061903 A1, 2010; d) M. Burger, M. Lindvall WO2010026121 A1,
2010; e) T. Wang, B. Hanzelka, U. Muh, G. Bemis, H. J. Zuccola, WO
2011019405, 2011.
[11] S. Fantasia, J. L. Petersen, H. Jacobsen, L. Cavallo, S. P. Nolan,
Organometallics. 2007, 26, 5880.
[12] W. A. Herrmann, M. Elison, J. Fischer, C. Köcher, G. Artus, Angew.
Chem. Int. Ed. 1995, 34, 2371.
[13] a) N. Marion, S. P. Nolan, Acc. Chem. Res. 2008, 41, 1440; b) A. F. Littke,
C. Dai, G. C. Fu, J. Am. Chem. Soc. 2000, 122, 4020.
[22] A. Arduengo, F. Gentry, P. Taverkere, H. Simmons, US6177575 B1 1998.
[23] a) C. J. O’Brien, E. A. B. Kantchev, C. Valente, N. Hadei, G. A. Chass,
A. Lough, A. C. Hopkinson, M. G. Organ, Chem. Eur. J. 2006, 12, 4743;
b) M. G. Organ, S. Çalimsiz, M. Sayah, K. H. Hoi, A. J. Lough, Angew.
[14] a) L. Taghizadeh Ghoochany, C. Kerner, S. Farsadpour, Y. Sun, F. Men-
ges, G. Niedner-Schatteburg, W. R. Thiel, Eur. J. Inorg. Chem. 2013,
This article is protected by copyright. All rights reserved.