ACS Catalysis
Letter
Vidal, V.; Pinel, C.; Laffitte, J. Dynamic Kinetic Resolution of Cyclic
β-Ketoesters with Preformed or Prepared in Situ Chiral Diphosphine-
Ruthenium (II) Catalysts. Tetrahedron Lett. 1994, 35, 4559−4562.
(c) Yang, J.; Wang, T.; Ding, Z.; Shen, Z.; Zhang, Y. Highly
Diastereo- and Enantioselective Organocatalytic Addition of Acetone
to β-Substituted α-Ketoesters via Dynamic Kinetic Resolution. Org.
Biomol. Chem. 2009, 7, 2208−2213. (d) Cohen, D. T.; Eichman, C.
C.; Phillips, E. M.; Zarefsky, E. R.; Scheidt, K. A. Catalytic Dynamic
Kinetic Resolutions with N-Heterocyclic Carbenes: Asymmetric
Synthesis of Highly Substituted β-Lactones. Angew. Chem., Int. Ed.
2012, 51, 7309−7313. (e) Zhang, G.; Yang, S.; Zhang, X.; Lin, Q.;
Das, D. K.; Liu, J.; Fang, X. Dynamic Kinetic Resolution Enabled by
Intramolecular Benzoin Reaction: Synthetic Applications and
Mechanistic Insights. J. Am. Chem. Soc. 2016, 138, 7932−7938.
(3) Select examples of DKR of α-keto esters: (a) Steward, K. M.;
Gentry, E. C.; Johnson, J. S. Dynamic Kinetic Resolution of α-Keto
Esters via Asymmetric Transfer Hydrogenation. J. Am. Chem. Soc.
2012, 134, 7329−7332. (b) Bartlett, S. L.; Keiter, K. M.; Johnson, J. S.
Synthesis of Complex Tertiary Glycolates by Enantioconvergent
Arylation of Stereochemically Labile α-Keto Esters. J. Am. Chem. Soc.
2017, 139, 3911−3916.
(4) Additions to α,β-enones with thermodynamic or kinetic
stereoconvergence at the α′-position: (a) Pandey, G.; Adate, P. A.;
Puranik, V. G. Organocatalytic Dynamic Kinetic Resolution via
Conjugate Addition: Synthesis of Chiral Trans-2,5-Dialkylcyclohex-
anones. Org. Biomol. Chem. 2012, 10, 8260−8267. Stereoconvergence
by alkene (E)/(Z)-isomerization: (b) Misaki, T.; Tatsumi, T.;
Okamoto, T.; Hayashi, Y.; Jin, N.; Sugimura, T. Stereoconvergent
1,4-Addition Reaction of 5 H -Oxazol-4-Ones with E, Z Isomeric
Mixture of Alkylidene β-Ketoesters Catalyzed by Chiral Guanidines.
Chem. - Eur. J. 2018, 24, 9778−9782. Stereoconvergent additions to
α,β-enones by reversible ring opening: (c) Orue, A.; Uria, U.; Roca-
(h) Mathews, C. J.; Taylor, J.; Tyte, M. J.; Worthington, P. A.
Microwave Assisted Suzuki Reactions for the Preparation of the
Antifungal 3-Aryl-5-Methyl-2,5-Dihydrofuran-2-ones. Synlett 2005,
2005, 538−540.
(8) Select examples of diastereoselective conjugate addition to γ-
substituted α,β-unsaturated butenolides: (a) Harcken, C.; Bruckner,
̈
R. Synthesis of Optically Active Butenolides and γ-Lactones by the
Sharpless Asymmetric Dihydroxylation Of β,γ-Unsaturated Carboxylic
Esters. Angew. Chem., Int. Ed. Engl. 1997, 36, 2750−2752. (b) Navarro,
́
C.; Moreno, A.; Csaky, A. G. Stereoselective Rhodium-Catalyzed
̈
Conjugate Addition of Boronic Acids to Unprotected δ-Hydroxy-γ-
butenolides. Synthesis of (−)-7-Oxamuricatacin and β-Substituted
Derivatives. J. Org. Chem. 2009, 74, 466−469. (c) Mao, B.; Geurts, K.;
́
Fananas-Mastral, M.; van Zijl, A. W.; Fletcher, S. P.; Minnaard, A. J.;
̃
Feringa, B. L. Catalytic Enantioselective Synthesis of Naturally
Occurring Butenolides via Hetero-Allylic Alkylation and Ring Closing
̈
Metathesis. Org. Lett. 2011, 13, 948−951. (d) Koschker, P.; Kahny,
M.; Breit, B. Enantioselective Redox-Neutral Rh-Catalyzed Coupling
of Terminal Alkynes with Carboxylic Acids toward Branched Allylic
Esters. J. Am. Chem. Soc. 2015, 137, 3131−3137.
̈
(9) Al-Shaal, M. G.; Ciptonugroho, W.; Holzhauser, F. J.; Mensah, J.
B.; Hausoul, P. J. C.; Palkovits, R. Catalytic Upgrading of α-Angelica
Lactone to Levulinic Acid Esters under Mild Conditions over
Heterogeneous Catalysts. Catal. Sci. Technol. 2015, 5, 5168−5173.
(10) Chen, T.; Qin, Z.; Qi, Y.; Deng, T.; Ge, X.; Wang, J.; Hou, X.
Degradable Polymers from Ring-Opening Polymerization of α-
Angelica Lactone, a Five-Membered Unsaturated Lactone. Polym.
Chem. 2011, 2, 1190−1194.
(11) Mascal, M.; Dutta, S.; Gandarias, I. Hydrodeoxygenation of the
Angelica Lactone Dimer, a Cellulose-Based Feedstock: Simple, High-
Yield Synthesis of Branched C -C Gasoline-like Hydrocarbons.
7
10
Angew. Chem., Int. Ed. 2014, 53, 1854−1857.
(12) Luo, Y.; Carnell, A. J. Chemoenzymatic Synthesis and
Application of Bicyclo[2.2.2]Octadiene Ligands: Increased Efficiency
in Rhodium-Catalyzed Asymmetric Conjugate Additions by Elec-
tronic Tuning. Angew. Chem., Int. Ed. 2010, 49, 2750−2754.
(13) Hayashi, T.; Takahashi, M.; Takaya, Y.; Ogasawara, M.
Catalytic Cycle of Rhodium-Catalyzed Asymmetric 1,4-Addition of
Organoboronic Acids. Arylrhodium, Oxa-π-Allylrhodium, and Hy-
droxorhodium Intermediates. J. Am. Chem. Soc. 2002, 124, 5052−
5058.
(14) Itooka, R.; Iguchi, Y.; Miyaura, N. Rhodium-Catalyzed 1,4-
Addition of Arylboronic Acids to α,β-Unsaturated Carbonyl
Compounds: Large Accelerating Effects of Bases and Ligands. J.
Org. Chem. 2003, 68, 6000−6004.
(15) CCDC 1918980 (3j), CCDC 1919324 (3g), and CCDC
1920098 (3q) contain the supplementary crystallographic data for this
paper. This data can be obtained free of charge from the Cambridge
(16) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N.
Rhodium-Catalyzed Asymmetric 1,4-Addition of Aryl- and Alkenyl-
boronic Acids to Enones. J. Am. Chem. Soc. 1998, 120, 5579−5580.
(17) Takaya, Y.; Senda, T.; Kurushima, H.; Ogasawara, M.; Hayashi,
T. Rhodium-Catalyzed Asymmetric 1,4-Addition of Arylboron
Reagents to α,β-Unsaturated Esters. Tetrahedron: Asymmetry 1999,
10, 4047−4056.
́
Lopez, D.; Delso, I.; Reyes, E.; Carrillo, L.; Merino, P.; Vicario, J. L.
Racemic Hemiacetals as Oxygen-Centered Pronucleophiles Trigger-
ing Cascade 1,4-Addition/Michael Reaction through Dynamic Kinetic
Resolution under Iminium Catalysis. Development and Mechanistic
Insights. Chem. Sci. 2017, 8, 2904−2913.
(5) Lima, C. G. S.; Monteiro, J. L.; de Melo Lima, T.; Weber Paixao,
̃
M.; Correa, A. G. Angelica Lactones: From Biomass-Derived Platform
Chemicals to Value-Added Products. ChemSusChem 2018, 11, 25−47.
́
(6) (a) Mao, B.; Fananas-Mastral, M.; Feringa, B. L. Catalytic
̃
̂
Asymmetric Synthesis of Butenolides and Butyrolactones. Chem. Rev.
2017, 117, 10502−10566. (b) Seitz, M.; Reiser, O. Synthetic
Approaches towards Structurally Diverse γ-Butyrolactone Natural-
Product-like Compounds. Curr. Opin. Chem. Biol. 2005, 9, 285−292.
(7) (a) Panfil, I.; Abramski, W.; Chmielewski, M. Conjugate
Addition of Hydroxylamines to 4-Subtituted Butenolides. J.
Carbohydr. Chem. 1998, 17, 1395−1403. See also: (b) Wu, Y.;
Singh, R. P.; Deng, L. Asymmetric Olefin Isomerization of
Butenolides via Proton Transfer Catalysis by an Organic Molecule.
J. Am. Chem. Soc. 2011, 133, 12458−12461. (c) Sorg, A.; Blank, F.;
Bruckner, R. Stepwise Cross-Couplings of a Dibromo-γ-Methylene-
̈
butenolide as an Access to Z -Configured α-Alkenyl-γ-Alkylidenebu-
tenolides. Straightforward Synthesis of the Antibiotic Lissoclinolide.
Synlett 2005, 2005, 1286−1290. (d) Jones, C. R.; Greenhalgh, M. D.;
Bame, J. R.; Simpson, T. J.; Cox, R. J.; Marshall, J. W.; Butts, C. P.
Subtle Temperature-Induced Changes in Small Molecule Conformer
Dynamics − Observed and Quantified by NOE Spectroscopy. Chem.
(18) Gross, A.; Borcherding, D. R.; Friedrich, D.; Sabol, J. S. A
Stereocontrolled Approach to Substituted Piperidones and Piper-
idines: Flavopiridol D-Ring Analogs. Tetrahedron Lett. 2001, 42,
1631−1633.
̈
̈
Commun. 2016, 52, 2920−2923. (e) Lindstrom, M.; Hedenstrom, E.;
Bouilly, S.; Velonia, K.; Smonou, I. Synthesis of Diastereo- and
Enantiomerically Pure Anti-3-Methyl-1,4-Pentanediol via Lipase
Catalysed Acylation. Tetrahedron: Asymmetry 2005, 16, 1355−1360.
(f) Zhou, L.; Lin, L.; Ji, J.; Xie, M.; Liu, X.; Feng, X. Catalytic
Asymmetric Vinylogous Mannich-Type (AVM) Reaction of Non-
activated α-Angelica Lactone. Org. Lett. 2011, 13, 3056−3059.
(g) Newland, M. J.; Rea, G. J.; Thuner, L. P.; Henderson, A. P.;
̈
Golding, B. T.; Rickard, A. R.; Barnes, I.; Wenger, J. Photochemistry
of 2-Butenedial and 4-Oxo-2-Pentenal under Atmospheric Boundary
Layer Conditions. Phys. Chem. Chem. Phys. 2019, 21, 1160−1171.
11618
ACS Catal. 2019, 9, 11614−11618