Wong et al.
SCHEME 1. Selective Oxid a tion of δ C-H Bon d
F IGURE 1. Proposed mechanism of intramolecular C-H
bond oxidation by dioxirane.
atom has been successfully accomplished by using the
radical reactions that undergo intramolecular 1,5-
hydrogen atom abstractions.5 Nevertheless, there is little
progress on the oxidation of more remote unactivated
C-H bonds in flexible molecules.6
Dioxiranes exhibit excellent reactivities in various
oxidation reactions, including epoxidation, heteroatom
oxidation, and hydroxylation of unactivated C-H bonds
under mild conditions.7,8 The hydroxylation reaction is
completely stereospecific and shows strong preference for
tertiary C-H bonds over secondary ones.8 Both concerted
and diradical pathways have been proposed for dioxirane-
mediated C-H bond oxidation on the basis of experi-
mental results.9 Theoretical calculations revealed that
dioxirane-mediated hydroxylation of C-H bonds could
proceed via a concerted spiro transition state as well as
a diradical intermediate.10
proposed a concerted C-H bond oxidation mechanism
(Figure 1). For ketones 1 and 2, the δ site oxidation gave
a mixture of two fused 1-oxadecalin products with a
trans/cis ratio about 4.5:1 (Scheme 1). A spiro transition-
state model (Figure 2), in which the two three-membered
rings adopt a spiro geometry, was proposed to explain
the observed trans selectivity.11,12 This spiro transition-
state model was supported by recent theoretical calcula-
tions.10,13 Here, we report our new investigation on the
scope of this hydroxylation reaction. Moreover, we de-
scribe the discoveries of (1) a new intramolecular oxida-
tion of tertiary γ′ C-H bonds of ketones and (2) a remote
regioselective hydroxylation reaction of steroids.
Resu lts a n d Discu ssion
1. Syn th esis of Keton es 3-13 for In tr a m olecu la r
Oxid a tion Rea ction s. We previously reported that
dioxiranes generated from the electronically activated
ketones, such as 1,1,1-trifluoromethyl ketones and sub-
stituted R-keto esters, showed excellent reactivities in
oxidation of unactivated C-H bonds. Therefore, those two
electronically activated ketone units were then attached
to a series of hydrocarbon chains for oxidation. The
general synthetic routes of ketones 3-13 are summarized
in Scheme 2 (for detailed experimental procedures, see
the Supporting Information).
Following Zard’s protocol,14 1,1,1-trifluoromethyl ke-
tones 3, 12, and 13 were readily synthesized by stirring
the corresponding carboxylic acid chlorides with tri-
fluoroacetic anhydride and pyridine in CH2Cl2. Ketones
4-6 were prepared by coupling of the corresponding
carboxylic acids and (cyanomethylene)phosphorane in the
presence of EDCI followed by oxidative cleavage with
We previously reported a preliminary study of a novel
reaction for oxidation of unactivated C-H bonds at the
δ site of ketones (Scheme 1).11 The observed regioselec-
tivity (i.e., δ selectivity) was different from that of a
typical intramolecular radical reaction, suggesting the
nonradical nature of this oxidation reaction.9,10 We thus
(6) (a) Wagner, P. J .; Kelso, P. A.; Kemppainen, A. E.; Zepp, R. G.
J . Am. Chem. Soc. 1972, 94, 7500. (b) Moreira, R. F.; When, P. M.;
Sames, D. Angew. Chem., Int. Ed. 2000, 39, 1618. (c) J ohnson, J . A.;
Sames, D. J . Am. Chem. Soc. 2000, 122, 6321. (d) Dangel, B. D.;
J ohnson, J . A.; Sames, D. J . Am. Chem. Soc. 2001, 123, 8149. (e)
J ohnson, J . A.; Li, N.; Sames, D. J . Am. Chem. Soc. 2002, 124, 6900.
(f) Dangel, B. D.; Godula, K.; Youn, S. W.; Sezen, B.; Sames, D. J . Am.
Chem. Soc. 2002, 124, 11856.
(7) For general reviews on dioxirane chemistry, see: (a) Adam, W.;
Curci, R.; Edwards, J . O. Acc. Chem. Res. 1989, 22, 205. (b) Murray,
R. W. Chem. Rev. 1989, 89, 1187. (c) Curci, R. Advances in Oxygenated
Processes; J AI: Greenwich, CT, 1990; Vol. 2, Chapter 1. (d) Adam, W.;
Hadjiarapoglou; Curci, R.; Mello, R. Organic Peroxides; Wiley: New
York, 1992; Chapter 4. (e) Adam, W.; Hadjiarapoglou, L. P. In Topics
in Current Chemistry; Springer-Verlag: Berlin, 1993; Vol. 164, p 45.
(f) Curci, R.; Dinoi, A.; Rubino, M. F. Pure Appl. Chem. 1995, 67, 811.
(8) For examples on oxidation of unactivated C-H bonds by diox-
iranes, see: (a) Murray, R. W.; J eyaraman, R.; Mohan, L. J . Am. Chem.
Soc. 1986, 108, 2470. (b) Mello, R.; Fiorentino, M.; Fusco, C.; Curci, R.
J . Am. Chem. Soc. 1989, 111, 6749. (c) Bovicelli, P.; Lupattelli, P.;
Mincione, E.; Prencipe, T.; Curci, R. J . Org. Chem. 1992, 57, 5052. (d)
Bovicelli, P.; Gambacorta, A.; Lupattelli, P.; Mincione, E. Tetrahedron
Lett. 1992, 33, 7411. (e) Adam, W.; Asensio, G.; Curci, R.; Nunez, M.
E. G.; Mello, R. J . Org. Chem. 1992, 57, 953. (f) Asensio, G.; Nunez,
M. E. G.; Bernardini, C. B.; Mello, R.; Adam, W. J . Am. Chem. Soc.
1993, 115, 7250. (g) Bovicelli, P.; Lupattelli, P.; Fiorini, V.; Mincione,
E. Tetrahedron Lett. 1993, 34, 6103. (h) Kuck, D.; Schuster, A.; Fusco,
C.; Fiorentino, M.; Curci, R. J . Am. Chem. Soc. 1994, 116, 2375. (i)
Curci, R.; Detomaso, A.; Prencipe, T.; Carpenter, G. B. J . Am. Chem.
Soc. 1994, 116, 8112. (j) Curci, R.; Detomaso, A.; Lattanzio, M. E.;
Carpenter, G. B. J . Am. Chem. Soc. 1996, 118, 11089. (k) Asensio, G.;
Castellano, G. Mello, R.; Nunez, M. E. G. J . Org. Chem. 1996, 61, 5564.
(l) Fusco, C.; Fiorentino, M.; Dinoi, A.; Curci, R.; Krause; R. A.; Kuck,
D. J . Org. Chem. 1996, 61, 8681. (m) Adam, W. Curci, R.; D’Accolti,
L.; Fusco, C.; Gasparrini, F. Kluge, R.; Paredes, R.; Schulz, M.; Smerz,
A. K.; Veloza, L. A.; Weinkotz, S.; Winde, R. Chem. Eur. J . 1997, 3,
105. (n) Nunez, M. E. G.; Royo, J .; Castellano, G.; Andreu, C.; Boix,
C.; Mello, R.; Asensio, G. Org. Lett. 2000, 2, 831. (o) Curci, R.; D′Accolti,
L.; Fusco, C. Tetrahedron Lett. 2001, 42, 7087. (p) D’Accolti, L.; Fusco,
C.; Lucchini, V.; Carpenter, G. B.; Curci, R. J . Org. Chem. 2001, 66,
9063. (q) Nunez, M. E. G.; Castellano, G.; Andreu, C.; Royo, J .;
Baguena, M.; Mello, R.; Asensio, G. J . Am. Chem. Soc. 2001, 123, 7487.
(r) D’Accolti, L.; Kang, P.; Khan, S.; Curci, R.; Foote, C. S. Tetrahedron
Lett. 2002, 43, 4649.
(9) For reports on the mechanism of C-H bond oxidation by
dioxiranes, see: (a) Minisci, F.; Zhao, L.; Fontana, F.; Bravo, A.
Tetrahedron Lett. 1995, 36, 1697. (b) Vanni, R.; Garden, S. J .; Banks,
J . T.; Ingold, K. U. Tetrahedron Lett. 1995, 36, 7999. (c) Simakov, P.
A.; Choi, S.-Y.; Newcomb, M. Tetrahedron Lett. 1998, 39, 8187. (d)
Bravo, A.; Fontana, F.; Fronza, G.; Minisci, F.; Zhao, L. J . Org. Chem.
1998, 63, 254. (e) Buxton, P. C.; Marples, B. A.; Toon, R. C. and
Waddington, V. L. Tetrahedron Lett. 1999, 40, 4729.
(10) (a) Shustov, G. V.; Rauk, A. J . Org. Chem. 1998, 63, 5413. (b)
Du, X.; Houk, K. N. J . Org. Chem. 1998, 63, 6480. (c) Glukhovtsev, M.
N.; Canepa, C.; Bach, R. D. J . Am. Chem. Soc. 1998, 120, 10528. (d)
Freccero, M.; Gandolfi, R.; Sarzi-Amade`, M.; Rastelli, A. Tetrahedron
Lett. 2001, 42, 2739.
(11) Yang, D.; Wong, M.-K.; Wang, X.-C.; Tang, Y.-C. J . Am. Chem.
Soc. 1998, 120, 6611.
(12) Bach, R. D.; Andres, J . L.; Su, M. D.; McDouall, J . J . W. J . Am.
Chem. Soc. 1993, 115, 5768.
(13) A similar spiro transition state has been found for dioxirane
epoxidation reactions. See: (a) Baumstark, A. L.; McCloskey, C. J .
Tetrahedron Lett. 1987, 28, 3311. (b) Baumstark, A. L.; Vasquez, P.
C. J . Org. Chem. 1988, 53, 3437. (c) Baumstark, A. L.; Harden. D. B.
J . Org. Chem. 1993, 58, 7615. (d) Bach, R. D.; Andres, J . L.; Su, M.-
D.; McDouall, J . J . W. J . Am. Chem. Soc. 1993, 115, 5768. (e) Tu, Y.;
Wang, Z.-X.; Shi, Y. J . Am. Chem. Soc. 1996, 118, 9806. (f) Yang, D.;
Wang, X.-C.; Wong, M.-K.; Yip, Y.-C.; Tang, M.-W. J . Am. Chem. Soc.
1996, 118, 11311. (g) Houk, K. N.; Liu, J .; DeMello, N. C.; Condroski,
K. R. J . Am. Chem. Soc. 1997, 119, 10147.
(14) Boivin, J .; Kaim, L. E.; Zard, S. Z. Tetrahedron Lett. 1992, 33,
1285.
6322 J . Org. Chem., Vol. 68, No. 16, 2003