2310
I. Cumpstey / Carbohydrate Research 344 (2009) 2285–2310
28. Ogawa, S.; Yasuda, K.; Takagaki, T.; Iwasawa, Y.; Suami, T. Carbohydr. Res. 1985,
141, 329–334.
explored. The chemistry summarised here that leads to this group
of structures is diverse, and includes different coupling reactions
associated with each of nitrogen, oxygen and sulfur nucleophiles.
The presence of C-5@C-5a unsaturation in the ring can be impor-
tant in enhancing the reactivity of an electrophile (e.g., in epoxide
opening) or introducing new reactivity (e.g., in palladium cou-
pling). The reactions often appear to suffer from sensitivity to the
sterically crowded and electron-poor nature of both nucleophile
and electrophile, so that chemistry that may work well on simple
systems can fail here.
The coupling reactions can be classified as indirect routes,
which rely on post-coupling modification (e.g., epimerisation or
reduction) to get the carbasugar or carbohydrate into its final form,
and direct routes, where this is not necessary. Direct routes sim-
plify already complex reaction sequences, and so such methods
would be preferable for all linkages. Such direct routes exist in
29. Cottaz, S.; Brimacombe, J. S.; Ferguson, M. Carbohydr. Res. 1993, 247, 341–345.
30. Ogawa, S.; Sugizaki, H. Carbohydr. Res. 1986, 156, 264–272.
31. Ogawa, S.; Tsunoda, H. Liebigs Ann. Chem. 1993, 755–769.
32. Ogawa, S.; Shibata, Y. J. Chem. Soc., Chem. Commun. 1988, 605–606.
33. Shibata, Y.; Ogawa, S. Carbohydr. Res. 1989, 189, 309–322.
34. Ogawa, S.; Uchida, C.; Shibata, Y. Carbohydr. Res. 1992, 223, 279–286.
35. Tsunoda, H.; Sasaki, S.-I.; Furuya, T.; Ogawa, S. Liebigs Ann. 1996, 159–165.
36. Ogawa, S.; Iwasawa, Y.; Toyokuni, T.; Suami, T. Carbohydr. Res. 1985, 141, 29–
40.
37. Ogawa, S.; Iwasawa, Y.; Toyokuni, T.; Suami, T. Chem. Lett. 1983, 337–340.
38. Ogawa, S.; Sugizaki, H.; Iwasawa, Y.; Suami, T. Carbohydr. Res. 1985, 140, 325–
331.
39. Shibata, Y.; Kosuge, Y.; Mizukoshi, T.; Ogawa, S. Carbohydr. Res. 1992, 228, 377–
398.
40. Paulsen, H.; Röben, W. Liebigs Ann. Chem. 1985, 974–994.
41. Paulsen, H.; Mielke, B. Liebigs Ann. Chem. 1990, 169–180.
42. Ogawa, S.; Shibata, Y.; Kosuge, Y.; Mizukoshi, T.; Uchida, C. J. Chem. Soc., Chem.
Commun. 1990, 1387–1388.
43. McAuliffe, J. C.; Stick, R. V.; Stone, B. A. Tetrahedron Lett. 1996, 37, 2479–2482.
44. McAuliffe, J. C.; Stick, R. V. Aust. J. Chem. 1997, 50, 219–224.
45. Stick, R. V.; Tilbrook, D. M. G.; Williams, S. J. Aust. J. Chem. 1999, 52, 885–894.
46. Ogawa, S.; Aso, D. Carbohydr. Res. 1993, 250, 177–184.
47. Ogawa, S.; Sekura, R.; Maruyama, A.; Odagiri, T.; Yuasa, H.; Hashimoto, H.
Carbohydr. Lett. 2000, 4, 13–20.
some cases. For example, the synthesis of a-manno-configured car-
basugars with N-, S- or O-linkages by a one-step 1,2-epoxide open-
ing seems apparently generally applicable.
Some other direct routes, such as the palladium-catalysed cou-
48. Ogawa, S.; Sugizaki, H. Chem. Lett. 1986, 1977–1980.
49. Yamagishi, T.; Uchida, C.; Ogawa, S. Bioorg. Med. Chem. Lett. 1995, 5, 487–490.
50. Yamagishi, T.; Uchida, C.; Ogawa, S. Chem. Eur. J. 1995, 1, 634–636.
51. Ogawa, S.; Ashiura, M.; Uchida, C. Carbohydr. Res. 1998, 370, 83–95.
52. Hayashida, M.; Sakairi, N.; Kuzuhara, H. Carbohydr. Res. 1986, 158, C5–C8.
53. Hayashida, M.; Sakairi, N.; Kuzuhara, H. Carbohydr. Res. 1989, 194, 233–246.
54. Haines, A. H.; Carvalho, I. Chem. Commun. 1998, 817–818.
55. Carvalho, I.; Haines, A. H. J. Chem. Soc., Perkin Trans. 1 1999, 1795–1800.
56. McAuliffe, J. C.; Stick, R. V.; Tilbrook, D. M. G.; Watts, A. G. Aust. J. Chem. 1998,
51, 91–95.
pling routes to N-linked
a-gluco carbasugar pseudodisaccharides
and the formation of 4-O-substituted glucose derivatives by triflate
displacement, are also apparently very efficient but maybe some-
what less explored. It would be desirable to see the development
of direct coupling routes for those cases where none exists already.
For example, new shorter and general routes to O-linked
a- and b-
galacto or N-linked -galacto derivatives would be welcome. The
a
biological activity of at least O- and N-linked carbasugar pseudodi-
saccharides justifies the further exploration of this type of struc-
ture, and hopefully in the future, efficient coupling methods for
the synthesis of all the relevant linkages can be found.
57. Horii, S.; Fukase, H.; Matsuo, T.; Kameda, Y.; Asano, N.; Matsui, K. J. Med. Chem.
1986, 29, 1038–1046.
58. Ogawa, S.; Funayama, S.; Okazaki, K.; Ishizuka, F.; Sakata, Y.; Doi, F. Bioorg. Med.
Chem. Lett. 2004, 14, 5183–5188.
59. Ogawa, S.; Toyokuni, T.; Suami, T. Chem. Lett. 1981, 947–950.
60. Toyokuni, T.; Ogawa, S.; Suami, T. Bull. Chem. Soc. Jpn. 1983, 2999–3004.
61. Sakairi, N.; Kuzuhara, H. Tetrahedron Lett. 1982, 23, 5327–5330.
62. McDonough, M. J.; Stick, R. V.; Tilbrook, D. M. G. Aust. J. Chem. 1999, 52, 143–
147.
63. Fairweather, J. K.; McDonough, M. J.; Stick, R. V.; Tilbrook, D. M. G. Aust. J. Chem.
2004, 57, 197–205.
64. McDonough, M. J.; Stick, R. V.; Tilbrook, D. M. G.; Watts, A. G. Aust. J. Chem.
2004, 57, 233–241.
References
1. Chen, X.; Fan, Y.; Zheng, Y.; Shen, Y. Chem. Rev. 2003, 103, 1955–1977.
2. Ogawa, S. Trends Glycosci. Glyc. 2004, 16, 39–53.
3. Ogawa, S.; Kanto, M.; Suzuki, Y. Mini-Rev. Med. Chem. 2007, 7, 679–691.
4. Fernández-Alonso, M. C.; Cañada, F. J.; Solís, D.; Cheng, X.; Kumaran, G.; André,
S.; Siebert, H.-C.; Mootoo, D. R.; Gabius, H.-J.; Jiménez-Barbero, J. Eur. J. Org.
Chem. 2004, 1604–1613.
5. Suami, T.; Ogawa, S. Adv. Carbohydr. Chem. Biochem. 1990, 48, 21–90.
6. Arjona, O.; Gómez, A. M.; López, J. C.; Plumet, J. Chem. Rev. 2007, 107, 1919–
2036.
7. Streitweiser, A.; Jayasree, E. G.; Leung, S. S.-H.; Choy, G. S.-C. J. Org. Chem. 2005,
70, 8486–8491.
65. Stick, R. V.; Tilbrook, D. M. G.; Williams, S. J. Aust. J. Chem. 1999, 52, 895–904.
66. McAuliffe, J. C.; Stick, R. V. Aust. J. Chem. 1997, 50, 203–207.
67. Shing, T. K. M.; Kwong, C. S. K.; Cheung, A. W. C.; Kok, S. H. L.; Yu, Z.; Li, J.;
Cheng, C. H. K. J. Am. Chem. Soc. 2004, 126, 15990–15992.
68. Shing, T. K. M.; Cheng, H. M.; Wong, W. F.; Kwong, C. S. K.; Li, J.; Lau, C. B. S.;
Leung, P. S.; Cheng, C. H. K. Org. Lett. 2008, 10, 3145–3148.
69. Shing, T. K. M.; Cheng, H. M. Org. Lett. 2008, 10, 4137–4139.
70. Knapp, S.; Naughton, A. B. J.; Dhar, T. G. M. Tetrahedron Lett. 1992, 33, 1025–
1028.
71. Paulsen, H.; von Deyn, W. Liebigs Ann. Chem. 1987, 141–152.
72. Akhtar, T.; Cumpstey, I. Tetrahedron Lett. 2007, 48, 8673–8677.
73. Ogawa, S.; Sasaki, S.-I.; Tsunoda, H. Chem. Lett. 1993, 1587–1590.
74. Ogawa, S.; Furuya, T.; Tsunoda, H.; Hindsgaul, O.; Stangier, K.; Palcic, M. M.
Carbohydr. Res. 1995, 271, 197–205.
75. Ogawa, S.; Matsunaga, N.; Palcic, M. Carbohydr. Lett. 1997, 2, 299–306.
76. Ogawa, S.; Ohmura, M.; Hisamatsu, S. Synthesis 2001, 312–316.
77. Ogawa, S.; Hirai, K.; Ohno, M.; Furuya, T.; Sasaki, S.-I.; Tsunoda, H. Liebigs Ann.
1996, 673–677.
78. Ogawa, S.; Aoyama, H.; Sato, T. Carbohydr. Res. 2002, 337, 1979–1992.
79. Ogawa, S.; Senba, Y. J. Carbohydr. Chem. 2006, 25, 69–93.
80. Pearce, A. J.; Sollogoub, M.; Mallet, J.-M.; Sinaÿ, P. Eur. J. Org. Chem. 1999, 11,
2103–2117.
81. Pearce, A. J.; Mallet, J. M.; Sinaÿ, P. Heterocycles 2000, 52, 819–826.
82. Pearce, A. J.; Chevalier, R.; Mallet, J. M.; Sinaÿ, P. Eur. J. Org. Chem. 2000, 2203–
2206.
83. Sollogoub, M.; Pearce, A. J.; Hérault, A.; Sinaÿ, P. Tetrahedron: Asymmetry 2000,
11, 283–294.
84. López-Méndez, B.; Jia, C.; Zhang, Y.; Zhang, L.-H.; Sinaÿ, P.; Jiménez-Barbero, J.;
Sollogoub, M. Chem. Asian J. 2008, 3, 51–58.
85. Jia, C.; Pearce, A. J.; Blériot, Y.; Zhang, Y.; Zhang, L.-H.; Sollogoub, M.; Sinaÿ, P.
Tetrahedron: Asymmetry 2004, 15, 699–703.
8. Shaik, S. J. Am. Chem. Soc. 1983, 105, 4359–4367.
9. Fürst, A.; Plattner, P. A. Helv. Chim. Acta 1949, 32, 275–283.
10. Ogawa, S.; Sasaki, S.-I.; Tsunoda, H. Carbohydr. Res. 1995, 274, 183–196.
11. Ogawa, S.; Nakamura, Y. Carbohydr. Res. 1992, 226, 79–89.
12. Ogawa, S.; Hirai, K.; Yamazaki, T.; Nakajima, A.; Matsunaga, N. Carbohydr. Lett.
1996, 2, 183–188.
13. Ogawa, S.; Hirai, K.; Odagiri, T.; Matsunaga, N.; Yamazaki, T.; Nakajima, A. Eur.
J. Org. Chem. 1998, 1099–1109.
14. Ogawa, S.; Matsunaga, N.; Li, H.; Palcic, M. Eur. J. Org. Chem. 1999, 631–642.
15. Okazaki, K.; Nishigaki, S.; Ishizuka, F.; Kajihara, Y.; Ogawa, S. Org. Biomol. Chem.
2003, 1, 2229–2230.
16. Ogawa, S.; Fujieda, S.; Sakata, Y.; Ishizaki, M.; Hisamatsu, S.; Okazaki, K.; Ooki,
Y.; Mori, M.; Itoh, M.; Korenaga, T. Bioorg. Med. Chem. 2004, 12, 6569–6579.
17. Shibata, Y.; Kosuge, Y.; Ogawa, S. Carbohydr. Res. 1990, 199, 37–54.
18. Ogawa, S.; Miyamoto, Y. J. Chem. Soc., Chem. Commun. 1987, 1843–1844.
19. Ogawa, S.; Miyamoto, Y.; Nose, T. J. Chem. Soc., Perkin Trans. 1 1988, 2675–2680.
20. Miyamoto, Y.; Ogawa, S. J. Chem. Soc., Perkin Trans. 1 1989, 1013–1018.
21. Miyamoto, Y.; Ogawa, S. Chem. Lett. 1988, 889–890.
22. Ogawa, S.; Sato, K.; Miyamoto, Y. J. Chem. Soc., Perkin Trans. 1 1993, 691–696.
23. Ogawa, S.; Toyokuni, T.; Iwasawa, Y.; Abe, Y.; Suami, T. Chem. Lett. 1982, 279–
282.
24. Ogawa, S.; Ogawa, T.; Chida, N.; Toyokuni, T.; Suami, T. Chem. Lett. 1982, 749–
752.
25. Ogawa, S.; Iwasawa, Y.; Toyokuni, T.; Suami, T. Chem. Lett. 1982, 1729–1732.
26. Ogawa, S.; Ogawa, T.; Iwasawa, Y.; Toyokuni, T.; Chida, N.; Suami, T. J. Org.
Chem. 1984, 49, 2494–2599.
86. Cheng, X.; Khan, N.; Kumaran, G.; Mootoo, D. R. Org. Lett. 2001, 3, 1323–1325.
87. Cumpstey, I.; Alonzi, D. S.; Butters, T. D. Carbohydr. Res. 2009, 344, 454–459.
27. Ogawa, S.; Iwasawa, Y.; Toyokuni, T.; Suami, T. Carbohydr. Res. 1985, 144, 155–
162.