C O M M U N I C A T I O N S
(2) (a) Ganem, B. Angew. Chem., Int. Ed. Engl. 1996, 25, 936. (b) Pesti, J.
A.; DiCosimo, R. Curr. Opin. Drug Discuss. DeV. 2003, 6, 884.
p-trifluoromethyl benzaldimine furnished the aza-Henry adduct as
a 19:1 mixture of cis:trans diastereomers 3i affording the cis-isomer
in 84% ee.
(3) (a) Oku, J.; Inoue, S. J. Chem. Soc., Chem. Commun. 1981, 229. (b) Iyer,
M. S.; Gigstad, K. M.; Namdev, M.; Lipton, M. J. Am. Chem. Soc. 1996,
118, 4910. (c) Corey, E. J.; Grogan, M. J. Org. Lett. 1999, 1, 157. (d)
Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 5315. (e)
Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 10012. (f) Huang,
Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature 2003, 424, 146.
(g) McDougal, N. T.; Schaus, S. E. J. Am. Chem. Soc. 2003, 125, 12094.
(h) Schuster, T.; Bauch, M.; Durner, G.; Gobel, M. W. Org. Lett. 2000,
2, 179.
(4) For the use of “minimal peptides” to simulate enzymatic transformations,
see the following review: Jarvo, E. R.; Miller, S. J. Tetrahedron 2002,
58, 2481.
(5) Lewis acid-assisted Brønsted acids: (a) Ishihara, K.; Kaneeda, M.;
Yamamoto, H. J. Am. Chem. Soc. 1994, 116, 11179. (b) Ishihara, K.;
Nakashima, D.; Hiraiwa, Y.; Yamamoto, H. J. Am. Chem. Soc. 2003,
125, 24.
(6) Polar ionic hydrogen bonds have been hypothesized as secondary
stereocontrol elements: (a) Nakadai, M.; Saito, S.; Yamamoto, H.
Tetrahedron 2002, 58, 8167. (b) Saito, S.; Nakadai, M.; Yamamoto, H.
Synlett 2001, 1245.
(7) A protonated amine has been used as a chiral proton delivery agent: (a)
Fuji, K.; Tanaka, K.; Miyamoto, H. Tetrahedron: Asymmetry 1994, 4,
247. (b) Hodous, B. L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 10006.
(8) (a) Westermann, B. Angew. Chem., Int. Ed. 2003, 42, 151. (b) Yamada,
K.; Moll, G.; Shibasaki, M. Synlett 2001, SI, 980. (c) Yamada, K.;
Harwood, S. J.; Groger, H.; Shibasaki, M. Angew. Chem., Int. Ed. 1999,
38, 3504. (d) Kobayashi, S.; Ishitani, H. Chem. ReV. 1999, 99, 1069. (e)
Knudsen, K. R.; Risgaard, T.; Nishiwaki, N.; Gothelf, K. V.; Jorgensen,
K. A. J. Am. Chem. Soc. 2001, 123, 5843.
(9) An enantioselective direct Henry reaction: Evans, D. A.; Seidel, D.;
Rueping, M.; Lam, H. W.; Shaw, J. T.; Downey, C. W. J. Am. Chem.
Soc. 2003, 125, 12692.
Speculation about the exact nature of the stereochemical-
determining catalyst-substrate complex would be premature at this
time. However, it is clear from these initial experiments that the
proton plays a key role in both substrate activation and orientation
leading to asymmetric induction. To this point, the pseudo-C2-
symmetric coordination complex 1 has provided an effective
prospecting tool,15 and determination of the actual reactive inter-
mediate remains the subject of investigation.
In conclusion, we have demonstrated the use of a chiral proton
(a polar ionic hydrogen bond) alone as both the means of activation
(function) and control (structure) of absolute and relative stereo-
chemistry. That the small-molecule BAM ligand effectively se-
questers the proton from solvent without reliance on an enveloping
peptidic superstructure suggests that chiral proton coordination
complexes may ultimately find broad application in enantioselective
Lewis acid catalysis. The ease with which a Brønsted acid can be
removed from the final reaction via a base wash, coupled with its
significantly lower cost and toxicity compared to traditional Lewis
acid complexes, should further stimulate the development of new
Brønsted acid-catalyzed reactions.16
Acknowledgment. J.N.J. dedicates this paper to Professors
Robert Johnson, Leo Paquette, and David Evans for their mentorship
and innumerable scientific contributions. Financial support was
provided by Indiana University and the Young Investigator Award
programs of Boehringer-Ingelheim, Amgen, Yamanouchi, and Eli
Lilly. We are grateful to undergraduate Travis R. Smith for
assistance with the preparation of several substrates.
(10) Gobel’s use of an axially chiral amidinium ion delivered up to a 57:43
ratio of enantiomers (14% ee) from a Diels-Alder cycloaddition, thereby
providing a promising first indication that polar ionic bonds alone might
be effective absolute stereocontrol elements (ref 3h).
(11) (a) Alder, R. W.; Bowman, P. S.; Steele, W. R. S.; Winterman, D. R. J.
Chem. Soc., Chem. Commun. 1968, 723. (b) Alder, R. W. Chem. ReV.
1989, 89, 1215. (c) Hodgson, P.; Lloyd-Jones, G. C.; Murray, M.;
Peakman, T. M.; Woodward, R. L. Chem. Eur. J. 2000, 6, 4451.
(12) Wagaw, S.; Rennels, R.; Buchwald, S. J. Am. Chem. Soc. 1997, 119, 8451.
(13) O’Brien, P. M.; Sliskovic, D. R.; Blankley, C. J.; Roth, B. D.; Wilson,
M. W.; Hamelehle, K. L.; Krause, B. R.; Stanfield, R. L. J. Med. Chem.
1994, 37, 1810.
Supporting Information Available: General experimental proce-
dures and analytical data for all new compounds (PDF). This material
(14) Gust, R.; Gelbcke, M.; Angermaier, B.; Bachmann, H.; Krauser, R.;
Schoneneberger, H. Inorg. Chim. Acta 1997, 264, 145.
(15) Whitesell, J. K. Chem. ReV. 1989, 89, 1581.
(16) Williams, A. L.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 1612.
References
(1) (a) Steiner, T. Angew. Chem., Int. Ed. 2002, 41, 48. (b) Jeffrey, G. A. An
Introduction to Hydrogen Bonding; Oxford University: New York, 1997.
JA031906I
9
J. AM. CHEM. SOC. VOL. 126, NO. 11, 2004 3419