2442
R. W. Nowill et al. / Tetrahedron Letters 52 (2011) 2440–2442
Table 2
Results from the whole-cell reaction scale up
Substrate
Enzyme
Yield (%)
Final concentration
Ethylated producta (%)
Bakers yeast (%) ethylateda
3a
4a
5a
6a
7a
8a
9a
YOL151w
YOL151w
YOL151w
YOL151w
YOL151w
YOL151w
YGL039w
98
86
96
89
91
89
91
0.66 g/L
0.69
1.01
0.41
0.55
<1
<1
4
2
2
38
28
90
78
63
71
41
0.57
0.49
<1
<1
The percent of ethylated product formed is compared to the percent ethylated by bakers’ yeast.
a
Percent calculated by GC analysis.
4. Kamal, A.; Ramesh Khanna, G. B.; Ramu, R. Tetrahedron: Asymmetry 2002, 13,
2039–2051.
5. Hammond, R. J.; Poston, B. W.; Ghiviriga, I.; Feske, B. D. Tetrahedron Lett. 2007,
48, 1217–1219.
6. Mitchell, D.; Koenig, T. M. Synth. Commun. 1995, 25(8), 1231–1238.
7. Main, B. G.; Tucker, H. Medicinal Chemistry: The role of Organic Chemistry in
Drug Research of Beta Blockers In Ganellin, C. R., Roberts, S. M., Eds.; London:
Academic Press, 1993.
8. Kamal, A.; Khanna, G. B. R.; Krishnaji, T.; Tekumalla, V.; Ramu, R. Tetrahedron:
Asymmetry 2005, 16, 1485–1494.
nitriles afford an alkylated major product when using C. lunata and
bakers’ yeast. We found that this heterologous whole-cell system
can limit the alkylated product to less than 5% and in some cases
no ethylated product is found. We observed the bakers yeast con-
version to be very slow and after 24 h there was usually less than
15% conversion (3 mM); whereas, using the overexpression system
usually achieved 100% conversion in 12 h. This is most likely due to
the difference in expression levels of the reductases in the bakers’
yeast versus the engineered cells.
9. Crowther, A. F.; Smith, L. H. J. Med. Chem. 1968, 11, 1118. and references
therein.
10. Chao, B. T.; Kang, S. K.; Shin, S. H. Bull. Korean Chem. Soc. 2002, 23(12), 1689–
1884.
3. Conclusions
11. Suto, Y.; Tsuji, R.; Kanai, M.; Shibasaki, M. Org. Lett. 2005, 7(17), 3757–3760.
12. Soai, K.; Hirose, Y.; Sakata, S. Tetrahedron: Asymmetry 1992, 3(6), 677–680.
13. Watanabe, M.; Murata, K.; Ikariya, T. J. Org. Chem. 2002, 67, 1712–1715.
14. Liu, P. N.; Gu, P. M.; Wang, F.; Tu, Y. Q. Org. Lett. 2004, 6(2), 169–172.
15. Granander, J.; Eriksson, J.; Hilmersson, G. Tetrahedron: Asymmetry 2006, 17,
2021–2027.
16. Dalpozzo, R.; Bartoli, G.; Bosco, M.; Nino, A. D.; Procopio, A.; Sambri, L.;
Tagarelli, A. Eur. J. Org. Chem. 2001, 2971–2976.
17. Goto, A.; Endo, K.; Ukai, Y.; Irle, S.; Saito, S. Chem. Comm. 2008, 2212–2214.
18. Kumagai, N.; Matsunaga, S.; Shibasaki, M. Tetrahedron 2007, 63, 8598–8608.
19. Suto, Y.; Kumagai, N.; Matsunaga, S.; Kanai, M.; Shibasaki, M. Org. Lett. 2003,
5(17), 3147–3150.
20. Pandey, R. K.; Fernandes, R. A.; Kumar, P. Tetrahedron Lett. 2002, 43, 4425–
4426.
21. Pamies, O.; Backvall, J. Adv. Synth. Catal. 2001, 343, 726–731.
22. Pamies, O.; Backvall, J. Adv. Synth. Catal. 2002, 344, 947–952.
23. Elenkov, M. M.; Hauer, B.; Janssen, D. B. Adv. Synth. Catal. 2006, 348, 579–585.
24. Itoh, T.; Takagi, Y. Chem. Lett. 1989, 1505–1506.
25. Itoh, T.; Mitsukura, K.; Kanphai, W.; Takagi, Y.; Kihara, H.; Tsukube, H. J. Org.
Chem. 1997, 62, 9165–9172.
26. Mukherjee, C.; Zhu, D.; Biehl, E. R.; Hua, L. Eur. J. Org. Chem. 2006, 5238–5242.
27. Kamila, S.; Zhu, D.; Biehl, E. R.; Hua, L. Org. Lett. 2006, 8(20), 4429–4431.
28. Zhu, D.; Ankati, H.; Mukherjee, C.; Yang, Y.; Biehl, E. R.; Hua, L. Org. Lett. 2007,
9(13), 2561–2563.
Asymmetric b-hydroxy nitriles are chiral precursors which have
been applied to the synthesis of serotonin reuptake inhibitors4–6
and b-adrenergic blocking agents.7–9 We have shown a simple
and scaleable approach to make a variety of asymmetric b-hydroxy
nitriles while avoiding the alkylated product often seen with
whole-cell biocatalysis. In most cases these products are reduced
with very high stereospecificity and there are also examples in
which both antipodes can be synthesized by using the appropriate
enzyme. Thus, we feel that these enzymes can be used in a simple
and scalable approach toward the synthesis of chiral drug analogs
of serotonin reuptake inhibitors and b-adrenergic blocking agents
by varying the substituent of these ketone substrates. Lastly, by
studying the enzymes in the library and correlating the data with
this class of substrates lend more insight into these reductases
and their families.
Acknowledgments
29. Ankati, H.; Zhu, D.; Yang, Y.; Biehl, E. R.; Hua, L. J. Org. Chem. 2009, 74, 1658–
1662.
This work was supported by NSF-RUI grant CHE-0848708 from
the Organic and Macromolecular Chemistry Program and NSF-MRI
CHE-0923153. Additional thanks to Jon Stewart at the University of
Florida for donating the enzyme library in these studies.
30. Itoh, T.; Takagi, Y.; Fujisawa, T. Tetrahedron Lett. 1989, 30(29), 3811–3812.
31. Smallridge, A. J.; Ten, A.; Trewhella, M. A. Tetrahedron Lett. 1998, 39, 5121–
5124.
32. Gotor, V.; Dehli, J. R.; Rebolledo, F. J. Chem. Soc., Perkin Trans. 2000, 1, 307–309.
33. Dehli, J. R.; Gotor, V. Tetrahedron: Asymmetry 2000, 11, 3693–3700.
34. Florey, P.; Smallridge, A. J.; Ten, A.; Trewhella, M. A. Org. Lett. 1999, 1(12),
1879–1880.
Supplementary data
35. Delhi, J. R.; Gotor, V. Tetrahedron: Asymmetry 2001, 12, 1485–1492.
36. Csuk, R.; Glanzer, B. I. Chem. Rev. 1991, 91, 49–96.
37. Kaluzna, I. A.; Matsuda, T.; Sewell, A. K.; Stewart, J. D. J. Am. Chem. Soc. 2004,
126, 12827–12832. and references therein.
38. Rodriguez, S.; Kayser, M. M.; Stewart, J. D. J. Am. Chem. Soc. 2001, 66, 733–738.
39. Kaluzna, I. A.; Feske, B. D.; Wittayanan, W.; Ghiviriga, I.; Stewart, J. D. J. Org.
Chem. 2005, 70(1), 342–345.
40. Feske, B. D.; Kaluzna, I. A.; Stewart, J. D. J. Org. Chem. 2005, 70(23), 9654–9657.
41. Feske, B. D.; Stewart, J. D. Tetrahedron: Asymmetry 16 2005, 3124–3127.
42. Kirsten, C. N.; Schrader, T. H. J. Am. Chem. Soc. 1997, 119, 12061–12068.
43. Stewart, J. D. Adv. Appl. Microbiol. 2006, 59, 31–52.
Supplementary data associated with this article can be found, in
References and notes
1. Keegen, S. D.; Hagen, S. R.; Johnson, D. A. Tetrahedron: Asymmetry 1996, 7(12),
3559–3564.
2. Fukuda, Y.; Okamoto, Y. Tetrahedron 2002, 58, 2513–2521.
3. Kamal, A.; Ramesh Khanna, G. B.; Krishnaji, T.; Ramu, R. Bioorg. Med. Chem. Lett.
2005, 15, 613–615.