Organic Letters
Letter
Table 4. Binding Motif of 2-PyCO2H and Expansion of 1-
Octene Epoxidation to Related Ligands
REFERENCES
■
a
(1) Sienel, G.; Rieth, R.; Rowbottom, K. T. Epoxides. In Ullmann’s
Encyclopedia of Industrial Chemistry; Wiley−VCH, 2000.
(2) (a) Adolfsson, H.; Coperet, C.; Chiang, J. P.; Yudin, A. K. J. Org.
Chem. 2000, 65, 8651−8658. (b) Herrmann, W. A.; Fischer, R. W.;
Rauch, M. U.; Scherer, W. J. Mol. Catal. 1994, 86, 243−266.
(3) McGarrigle, E. M.; Gilheany, D. G. Chem. Rev. 2005, 105, 1563−
1602.
(4) (a) Costas, M.; Mehn, M. P.; Jensen, M. P.; Que, L. Chem. Rev.
2004, 104, 939−986. (b) Wu, A. J.; Penner-Hahn, J. E.; Pecoraro, V. L.
Chem. Rev. 2004, 104, 903−938.
(5) Selected examples: (a) Chen, K.; Costas, M.; Kim, J. H.; Tipton,
A. K.; Que, L. J. Am. Chem. Soc. 2002, 124, 3026−3035. (b) Dubois,
G.; Murphy, A.; Stack, T. D. P. Org. Lett. 2003, 5, 2469−2472.
(c) Murphy, A.; Dubois, G.; Stack, T. D. P. J. Am. Chem. Soc. 2003,
125, 5250−5251. (d) Murphy, A.; Pace, A.; Stack, T. D. P. Org. Lett.
2004, 6, 3119−3122. (e) Murphy, A.; Stack, T. D. P. J. Mol. Catal. A:
́
Chem. 2006, 251, 78−88. (f) Mas-Balleste, R.; Que, L. J. Am. Chem.
ligand
conv (%)
yield (selectivity) (%)
Soc. 2007, 129, 15964−15972. (g) Garcia-Bosch, I.; Company, A.;
Fontrodona, X.; Ribas, X.; Costas, M. Org. Lett. 2008, 10, 2095−2098.
(h) Garcia-Bosch, I.; Ribas, X.; Costas, M. Adv. Synth. Catal. 2009,
351, 348−352. (i) Dong, J. J.; Saisaha, P.; Meinds, T. G.; Alsters, P. L.;
1
2
3
4
5
6
7
2-PyCO2H
2-PmCO2H
1-IqCO2H
98
94
83 (85)
77 (82)
77 (85)
71 (79)
trace
91
Ijpeij, E. G.; van Summeren, R. P.; Mao, B.; Fananas
́
-Mastral, M.; de
Boer, J. W.; Hage, R.; Feringa, B. L.; Browne, W. R. ACS Catal. 2012,
2, 1087−1096. (j) Cusso, O.; Garcia-Bosch, I.; Ribas, X.; Lloret-Fillol,
̃
b
2-ImCO2H
3-PyCO2H
L-Pro
90
<10
<10
<10
́
trace
J.; Costas, M. J. Am. Chem. Soc. 2013, 135, 14871−14878.
(6) (a) Baxter, P. N. W.; Connor, J. A.; Wallis, J. D.; Povey, D. C.;
Powell, A. K. J. Chem. Soc., Perkin Trans. 1 1992, 1601−1605.
(b) Pijper, D.; Saisaha, P.; de Boer, J. W.; Hoen, R.; Smit, C.;
Meetsma, A.; Hage, R.; van Summeren, R. P.; Alsters, P. L.; Feringa, B.
L.; Browne, W. R. Dalton Trans. 2010, 39, 10375−10381.
(7) (a) Ottenbacher, R. V.; Samsonenko, D. G.; Talsi, E. P.;
Bryliakov, K. P. ACS Catal. 2014, 4, 1599−1606. (b) Gormisky, P. E.;
White, M. C. J. Am. Chem. Soc. 2013, 135, 14052−14055. (c) Gomez,
L.; Garcia-Bosch, I.; Company, A.; Sala, X.; Fontrodona, X.; Ribas, X.;
Costas, M. Dalton Trans. 2007, 5539−5545.
2-PyCONH2
trace
a
0.4 mol % of Mn(CF3SO3)2, 2 mol % of ligand, 100 μmol of 1-octene
in MeCN (0.45 M), 1.1 equiv of PAAM, 0 °C, 5 min. Conversion and
yield determined by GC relative to dodecane internal standard. Results
are an average of three trials: conversion
ligand solubility, reactions were run in 9:1 MeCN/H2O (v/v).
b
2%, yield
1%. For
dihydroxylationthe chemically distinct Mn-based active
oxidant generated in our system dramatically expands the
scope of epoxidation, with complete selectivity for epoxides
over diols. Further studies are underway to elucidate the nature
of the proposed electrophilic, high-valent Mn = O active
oxidant and to advance our understanding of the chemistry
underlying the efficiency of this system.
(8) To our knowledge, only Mn−salen catalysts are known to carry
out practical epoxidations at −78 °C in a comparable time frame:
Palucki, M.; Pospisil, P. J.; Zhang, W.; Jacobsen, E. N. J. Am. Chem. Soc.
1994, 116, 9333−9334.
(9) Anderegg, G. Helv. Chim. Acta 1960, 43, 414−424.
(10) Oyama, S. T. Rates, Kinetics, and Mechanisms of Epoxidation:
Homogeneous, Heterogeneous, and Biological Routes. In Mechanisms
in Homogeneous and Heterogeneous Epoxidation Catalysis; Oyama, S. T.,
Ed.; Elsevier: Amsterdam, 2008.
ASSOCIATED CONTENT
■
(11) Rozen, S.; Kol, M. J. Org. Chem. 1990, 55, 5155−5159.
(12) (a) Shibuya, M.; Ando, K.; Yamada, T. Heterocycles 1989, 29,
S
* Supporting Information
2209−2218. (b) Korn, A.; Rudolph-Bohner, S.; Moroder, L.
̈
The Supporting Information is available free of charge on the
Tetrahedron 1994, 50, 8381−8392.
(13) Labroo, R. B.; Thummel, K. E.; Kunze, K. L.; Podoll, T.; Trager,
W. F.; Kharasch, E. D. Drug Metab. Dispos. 1995, 23, 490−496.
(14) (a) Ferrer, M.; Sanchez-Baeza, F.; Messeguer, A.; Diez, A.;
Rubiralta, M. J. Chem. Soc., Chem. Commun. 1995, 293−294.
(b) Howell, J. M.; Feng, K.; Clark, J. R.; Trzepkowski, L. J.; White,
M. C. J. Am. Chem. Soc. 2015, 137, 14590−14593.
Experimental procedures, discussion of catalyst speci-
ation, expanded substrate scope, effects of PAA
formulation, additional comparisons between catalyst
systems, and additional ligand screening trials (PDF)
(15) (a) Sawant, S. C.; Wu, X.; Cho, J.; Cho, K.-B.; Kim, S. H.; Seo,
M. S.; Lee, Y.-M.; Kubo, M.; Ogura, T.; Shaik, S.; Nam, W. Angew.
Chem., Int. Ed. 2010, 49, 8190−8194. (b) Wu, X.; Seo, M. S.; Davis, K.
M.; Lee, Y.-M.; Chen, J.; Cho, K.-B.; Pushkar, Y. N.; Nam, W. J. Am.
Chem. Soc. 2011, 133, 20088−20091.
AUTHOR INFORMATION
■
Corresponding Author
(16) 2-PyCO2H2+ has pKa’s of 1.0 and 5.4: Harris, D. C. Quantitative
Chemical Analysis, 7th ed.; WH Freeman & Co.: New York, 2006. In
the buffered conditions employed in this study, the carboxylate anion
should be the major species in solution.
Notes
The authors declare no competing financial interest.
(17) (a) de Oliveira, F. T.; Chanda, A.; Banerjee, D.; Shan, X. P.;
Mondal, S.; Que, L.; Bominaar, E. L.; Munck, E.; Collins, T. J. Science
2007, 315, 835−838. (b) Borovik, A. S. Chem. Soc. Rev. 2011, 40,
1870−1874.
ACKNOWLEDGMENTS
■
We thank Tim Brown (Zare lab, Stanford University) for
assistance with HRMS data collection.
D
Org. Lett. XXXX, XXX, XXX−XXX