R. E. McDevitt et al. / Bioorg. Med. Chem. Lett. 15 (2005) 3137–3142
3141
Scheme 2. Reagents: (a) HI (57%), AcOH.
E. M.; Nilsson, O.; Holst, M.; Savendahl, L.; Wroblewski,
J. J. Steroid Biochem. Mol. Biol. 2000, 74, 383.
2. Tsai, M. J.; OÕMalley, B. W. Annu. Rev. Biochem. 1994, 63,
451.
3. Green, S.; Walter, P.; Kumar, V.; Krust, A.; Bornert, J.
M.; Argos, P.; Chambon, P. Nature 1986, 320, 134.
4. Kuiper, G. G. J. M.; Enmark, E.; Pelto-Huikko, M.;
Nilsson, S.; Gustafsson, J. A. Proc. Natl. Acad. Sci.
U.S.A. 1996, 93, 5925.
decreased affinity for both receptors. As observed in the
6-hydroxy series, placing a phenyl group at the 3-posi-
tion 33 gave equivalent potency (10 nM) at both ERa
and ERb. The 5,7-dihydroxy analog 34, being the most
structurally similar to genistein, bound tightly to ERb
(2.4 nM) and was 13-fold selective. Docking studies sug-
gest that 34 adopts a binding mode similar to that of
genistein.
5. Brzozowski, A. M.; Pike, A. C. W.; Dauter, Z.; Hubbard,
R. E.; Bonn, T.; Engstrom, O.; Ohman, L.; Greene, G.;
Gustafsson, J. A.; Carlquist, M. Nature 1997, 389, 753.
6. Pike, A. C. W.; Brzozowski, A. M.; Hubbard, R. E.;
Bonn, T.; Thorsell, A.-G.; Engstrom, O.; Ljunggren, J.;
Ohman, L.; Gustafsson, J. A.; Carlquist, M. EMBO J.
1999, 18, 4608.
Finally, we investigated the planarity requirements of
the indenone core. As shown in Scheme 2, enone 10
could be simultaneously deprotected and reduced with
HI (57%) in acetic acid to afford the indane 36. This ana-
log displayed a significant decrease in potency at ERb
(700 nM) and ERa (690 nM), with loss of selectivity as
compared to 14. While there may be some contribution
to this decrease in affinity due to removal of the bromo
group, it is hypothesized that the primary contribution
is most likely disruption of the core scaffold shape, pre-
venting optimal orientation of the key hydroxyl groups.
7. Mosselman, S.; Polman, J.; Dijkema, R. FEBS Lett. 1996,
392, 49.
8. (a) Couse, J. F.; Lindzey, J.; Grandien, K.; Gustafsson, J.
A. Endocrinology 1997, 138, 4613; (b) Kuiper, G. G. J. M.;
Carlsson, B.; Grandien, K.; Enmark, E.; Haggblad, J.;
Nilsson, S.; Gustafsson, J. A. Endocrinology 1997, 138,
863.
9. (a) Sar, M.; Welsch, F. Endocrinology 1999, 140, 963; (b)
Fitzpatrick, S. L.; Funkhouser, J. M.; Sindoni, D. M.;
Stevis, P. E.; Deecher, D. C.; Bapat, A. R.; Merchenthaler,
I.; Frail, D. E. Endrocrinology 1999, 140, 2581.
10. (a) Sun, J.; Meyers, M. J.; Fink, B. E.; Rajendran, R.;
Katzenellenbogen, J. A.; Katzenellenbogen, B. S. Endo-
crinology 1999, 140, 800; (b) Harris, H. A.; Katzenellen-
bogen, J. A.; Katzenellenbogen, B. S. Endocrinology 2002,
143, 4172.
11. (a) Edsall, R. J.; Harris, H. A.; Manas, E. S.; Mewshaw,
R. E. Bioorg. Med. Chem. 2003, 11, 3457; (b) Yang, C.;
Edsall, R. J.; Harris, H. A.; Zhang, X.; Manas, E. S.;
Mewshaw, R. E. Bioorg. Med. Chem. 2004, 12, 2553.
12. Schopfer, U.; Schoeffter, P.; Bischoff, S. F.; Nozulak, J.;
Feuerbach, D.; Floersheim, P. J. Med. Chem. 2002, 45,
1399.
In summary, we have demonstrated that both the 5- and
6-hydroxy indenone cores bind potently to ERb and
ERa and show moderate ERb selectivity. Compound
14 was co-crystallized with ERb. The binding mode
was found to be similar to that of genistein, with the
exception that the direction of the carbonyl group is re-
versed. This appears to be influenced by the way the 6-
hydroxy group is directed toward its hydrogen bonding
partner His475. A more genistein-like binding mode,
with the carbonyl moiety directed toward a similar re-
gion of the binding pocket as that of genistein, is pre-
dicted for 5-hydroxy analog 34 based on docking
calculations. Analog 34 showed similar binding potency
but 2–3-fold less selectivity over its genistein
counterpart.
13. (a) Muthyala, R. S.; Carlson, K. E.; Katzenellenbogen, J.
A. Bioorg. Med. Chem. Lett. 2003, 13, 4485; (b) Shibley,
R.; Hatoum-Mokdad, H.; Schoenleber, R.; Musza, L.;
Stirtan, W.; Marrero, D.; Carley, W.; Ziao, H.; Dumas, J.
Bioorg. Med. Chem. Lett. 2003, 13, 1919.
Acknowledgements
14. Malamas, M. S.; Manas, E. S.; McDevitt, R. E.; Guna-
wan, I.; Xu, Z. B.; Collini, M. D.; Miller, C. P.; Dihn, T.;
Bray, J.; Henderson, R. A.; Keith, J. C.; Harris, H. A. J.
Med. Chem. 2004, 47, 5021.
We thank the Wyeth Discovery Analytical Chemistry
department for physical analysis and Dr. Al Robichaud
for advice and discussion.
15. Collini, M. D.; Kaufman, D. H.; Manas, E. S.; Harris, H.
A.; Henderson, R. A.; Xu, Z. B.; Unwalla, R. J.; Miller, C.
P. Bioorg. Med. Chem. Lett. 2004, 14, 4925.
References and notes
16. (a) Anstead, G. M.; Altenbach, R. J.; Wilson, S. R.;
Katzenellenbogen, J. A. J. Med. Chem. 1988, 31, 1316; (b)
Anstead, G. M.; Peterson, C. S.; Pinney, K. G.; Wilson, S.
R.; Katzenellenbogen, J. A. J. Med. Chem. 1990, 33, 2726.
17. (a) Anstead, G. M.; Ensign, J. L.; Peterson, C. S.;
Katzenellenbogen, J. A. J. Org. Chem. 1989, 54, 1485;
(b) Anstead, G. M.; Wilson, S. R.; Katzenellenbogen, J. A.
J. Med. Chem. 1989, 32, 2163.
1. (a) Mendelsohn, M. E.; Karas, R. H. New Engl. J. Med.
1999, 340, 1801; (b) Epperson, C. N.; Wisner, K. L.;
Yamamoto, B. Psychosomatic Med. 1999, 61, 676; (c)
Crandall, J. Womens Health Gender Based Med. 1999, 8,
1155; (d) Hurn, P. D.; Macrae, I. M. J. Cerebral Blood
Flow Metab. 2000, 20, 631; (e) Toran-Allerand, C. D. J.
Steroid Biochem. Mol. Biol. 1996, 56, 169–178; (f) Ritzen,