4
Tetrahedron
3.
(a) Lan, R.; Liu, Q.; Fan, P.; Lin, S.; Fernando, S. R.; McCallion,
D.; Pertwee, R.; Makriyannis, A. J. Med. Chem. 1999, 42, 769.
Moore, K. W.; Bonner, K.; Jones, E. A.; Emms, F.; Leeson, P. D.;
Marwood, R.; Patel, S.; Rowley, M.; Thomas, S.; Carling, R. W.
Bioorg. Med. Chem. Lett. 1999, 9, 1285.
A large scale reaction using 5.5 mmol of 1a gave product 3a
(1.24 g) in 89% yield without a significant decrease in its
efficiency (Fig. 1). The structure of 3a was confirmed by X-ray
crystallography (Fig. 1).21
4.
5.
6.
Selected Reviews: (a) Ibrahim, Y. A.; Elwahy, A. H. M.; Kadry,
A. M. Adv. Heterocycl.Chem., 1996, 65, 235. (b) Varvounis, G.;
Giannopoulos, T. Adv. Heterocycl. Chem. 1996, 65, 193. (c)
Litvinov, V. P.; Russ. Chem. Bull., 2004, 53, 487. (d) Hafez, H.
N.; El-Gazzara, A. B. A. Bioorg. Med. Chem. Lett. 2008, 18,
5222. (e) Alagarsamy, V.; Meena, S.; Ramseshu, K. V.; Solomon,
V. R.; Thiru-murugan, K.; Dhanabal, K.; Murugan, M. Eur. J.
Med. Chem. 2006, 41, 1293.
(a) Kim, S. M.; Lee, S. W.; Song, Y.-H.; Bull. Korean Chem. Soc.
2014, 35, 2859. (b) Snégaroff, K.; Lassagne, F.; Bentabed-Ababsa,
G.; Nassar, E.; Ely, S. C. S.; Hesse, S.; Per-spicace, E.; Derdour,
A.; Mongin, F. Org. Biomol. Chem. 2009, 7, 4782. (c) Park, J. W.;
Song, Y.-H.; Heterocycl. Commun. 2017, 23, 281.
Based on previous work,16 a plausible mechanism was
proposed as illustrated in Figure 2. α,β-Unsaturated diazo
intermediate A is generated in situ from α,β-unsaturated N-
tosylhydrazone 1a upon treatment with Cs2CO3. 3-Phenyl-3H-
pyrazole B is formed from diazo intermediate A via an
intermolecular cyclization process. Then, 3-phenyl-3H-pyrazole
B is easily transformed into the more stable 3-phenyl-1H-
pyrazole C and 5-phenyl-1H-pyrazole C’ through proton transfer
tautomerization. 3-Phenyl-1H-pyrazole
C
is the major
intermediate due to its larger conjugation compared to C’.16 An
intermolecular nucleophilic aromatic substitution (SNAr) reaction
of 4-chlorothieno[2,3-d]pyrimidine 2a with the anion of pyrazole
provides the major product 3a and minor product 3a’ under basic
conditions. Product 3a was the major isomer partly because the
rate of 5-phenyl-1H-pyrazole C’ reacting with 2a is slower than
that of C due to its larger steric hindrance.
7.
8.
Fustero, S.; Sanchez-Rosello, M.; Barrio, P.; Simon-Fuentes, A.;
Chem. Rev. 2011, 111, 6984.
(a) Pérez-Aguilar M. C.; Valdés S. Angew. Chem. Int. Ed. 2013,
52, 7219. (b) Deng X.; Mani N. S. Org. Lett. 2008, 10, 1307. (c)
Zhang G.; Chen, H.; Ni, W.; Shao J.; Liu H.; Chen, B.; Yu, Y.
Org. Lett. 2013, 15, 5967.(d) Hao, L.; Hong, J.; Zhu, J.; Zhan, Z.;
Chem. Eur. J. 2013, 19, 5715. (e) Martín, R.; Rivero, M. R.;
Buchwald, S. L. Angew. Chem. Int. Ed. 2006, 45, 7079. (f) Zora,
M.; Kivrak, A. J. Org. Chem. 2011, 76, 9379. (g) Zora, M.;
Kivrak, A.; Yazici, C.; J. Org. Chem. 2011, 76, 6726. (h) Waldo,
J. P.; Mehta, S.; Larock, R. C.; J. Org. Chem. 2008, 73, 6666. (i)
Wang, L.; Yu, X.; Feng, X.; Bao, M. J. Org. Chem. 2013, 78,
1693. (j) Kirkham, J. D.; Edeson, S. J.; Stokes, S.; Harrity, J. P. A.
Org. Lett. 2012, 14, 5354. (k) Okitsu, T.; Sato, K.; Wada, A. Org.
Lett. 2010, 12, 3506. (l) Heller, S. T.; Natarajan, S. R. Org. Lett.
2006, 8, 2675. (m) Gerstenberger, B. S.; Rauckhorst, M. R.; Starr,
J. T. Org. Lett. 2009, 11, 2097.
N
N
N
Ph
proton
transfer
cyclization
N
NNHTs
base
H
B
Ph
Ph
-H+, -Ts
A
N
Cl
Ph
NH
N
N
Ph
N
N
N
C
major
S
Base
+
N
3a 3a'
+
H
N
SNAr
9.
(a) Barluenga, J.; Moriel, P.; Valdes, C.; Aznar, F. Angew. Chem.,
Int. Ed. 2007, 46, 5587. (b) Barluenga, J.; Tomas, G. M.; Aznar,
F.; Valdes, C. Nat. Chem. 2009, 1, 494.
Ph
Ph
N
C'
minor
10. (a) Plaza, M.; Valdes, C. J. Am. Chem. Soc. 2016, 138, 12061. (b)
Perez, A. M. C.; Valdes, C. Angew. Chem., Int. Ed. 2012, 51,
5953.
11. (a) Zhou, L.; Ye, F.; Ma, J.; Zhang, Y.; Wang, J. Angew. Chem.,
Int. Ed. 2011, 50, 3510. (b) Wang, H.; Li, L.; Zhang, Y.; Wang, J.
Angew. Chem., Int. Ed. 2012, 51, 2943.
12. (a) Zhu, C.; Zhu, R.; Chen, P.; Wu, W.; Jiang, H. Adv. Synth.
Catal. 2017, 359, 3154. (b) Jiang, H.; Chen,F.; Zhu, C.; Zhu, R.;
Zeng,H.; Liu, C.; Wu, W. Org. Lett. 2018, 20, 3166.
13. (a) Tang, M.; Zhang, W.; Kong, Y. Org. Biomol. Chem. 2013, 11,
6250. (b) Kong, Y.; Tang, M.; Wang, Y. Org. Lett., 2014, 16, 576.
(c) Perez-Aguilar, M. C.; Valdés, C. Angew. Chem., Int. Ed. 2015,
54, 13729. (d) Perez-Aguilar, M. C.; Valdés, C. Angew. Chem.,
Int. Ed. 2013, 52, 7219.
14. (a) Zhang, X.; Kang, J.; Niu, P.; Wu, J.; Yu, W.; Chang, J. J. Org.
Chem. 2014, 79, 10170. (b) Aggarwal, R.; Kumar, R. Synth.
Commun. 2009, 39, 2169. (c) Desai, V. G.; Satardekar, P. C.;
Polo, S.; Dhumaskar, K. Synth. Commun. 2012, 42, 836. (d) Hu,
J.; Chen, S.; Sun, Y.; Yang, J.; Rao, Y. Org. Lett. 2012, 14, 5030.
(e) Li, X.; He, L.; Chen, H.; Wu, W.; Jiang, H. J. Org. Chem.
2013, 78, 3636. (f) Zhang, T.; Bao, W. J. Org. Chem. 2013, 78,
1317. (g) Kashiwa, M.; Sonoda, M.; Tanimori, S. Eur. J. Org.
Chem. 2014, 4720. (h) Düerr, H. Chem. Ber., 1970, 103, 369. (i)
Almirante, N.; Cerri, A.; Fedrizzi, G.; Marazzi, G.; Santagostino
M. Tetrahedron Lett., 1998, 39, 3287. (i) Corradi, A.; Leonelli, C.;
Rizzuti, A.; Rosa, R.; Veronesi, P.; Grandi, R.; Baldassari, S.;
Villa C. Molecules, 2007, 12, 1482.
15. (a) Wang, Q.; He, L.; Li, K. K.; Tsui, G. C. Org. Lett. 2017, 19,
658. (b) Li, N.; Li, B.; Chen, S. Synlett 2016, 27, 1597. (c) Zora,
M.; Kivrak, A.; Yazici C. J. Org. Chem. 2011, 76, 6726. (d) Zora,
M.; Kivrak, A. J. Org. Chem. 2011, 76, 9379. (e) Qian, J.; Liu, Y.;
Zhu, J.; Jiang, B.; Xu, Z. Org. Lett. 2011, 13, 4220. (f) Ji, G.;
Wang, X.; Zhang, S.; Xu, Y.; Ye, Y.; Li, M.; Zhang, Y.; Wang, J.
Chem. Commun. 2014, 50, 4361. (g) Kusakabe, T.; Sagae, H.;
Kato, K. Org. Biomol. Chem. 2013, 11, 4943. (h) Suzuki, Y.;
Naoe, S.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2012, 14, 326.
(i) Qian, J.; Liu, Y.; Zhu, J.; Jiang, B.; Xu, Z. Org. Lett. 2011, 13,
4220. (j) Zora, M.; Kivrak, A. J. Org. Chem. 2011, 76, 9379. (k)
Zora, M.; Kivrak, A.; Yazici, C. J. Org. Chem. 2011, 76, 6726. (l)
Willy, B.; Müller, T. J. J. Org. Lett. 2011, 13, 2082. (m) Waldo, J.
P.; Mehta, S.; Larock, R. C. J. Org. Chem. 2008, 73, 6666.
Figure 2. Proposed reaction mechanism.
Conclusion
In summary, a cascade reaction of α,β-unsaturated N-
tosylhydrazones with N-heteroaryl chlorides to directly access
carbon-nitrogen (C-N) linked bi(heteroaryl) derivatives bearing
both pyrazole and thienopyrimidine rings, as well as other N-
heteroaryl rings (pyridine, pyrimidine, pyrazine, and quinazoline)
was developed.
A
broad range of α,β-unsaturated N-
tosylhydrazone reagents and N-heteroaryl chloride compounds
were tolerated. The reaction proceeds under metal-free conditions,
giving highly functionalized bi(heteroaryl) products with good to
excellent yields and regioselectivities. The procedure is
operationally simple and applicable to large-scale synthesis.
Acknowledgments
We are grateful for financial support from the National
Natural Science Foundation of China (NO. 21672172), and the
project of Youth Science and Technology Innovation Team of
Sichuan Province (NO. 2017TD0008), and the Education
Department of Sichuan Province (NO. 15CZ0016).
References and notes
1.
2.
(a) Tanii, S.; Arisawa, M.; Tougo, T.; Yamaguchi M. Org. Lett.
2018, 20, 1756. (b) Sun, X.; Yu, Z.; Wu, S.; Xiao, W.-J.
Organometallics 2005, 24, 2959.
(a) Finn, J.; Mattia, K.; Morytko, M.; Ram, S.; Yang, Y.; Wu, X.;
Mak, E.; Gallant, P.; Keith, D. Bioorg. Med. Chem. Lett. 2003, 13,
2231. (b) Castagnolo, D.; Manetti, F.; Radi, M.; Bechi, B.;
Pagano, M.; De Logu, A.; Meleddu, R.; Saddi, M.; Botta, M.
Bioorg. Med. Chem Lett. 2009, 17, 5716.