Chemistry Letters Vol.34, No.5 (2005)
725
gated polymer containing double bonded phosphorus. These
polymer metal complexes can be regarded as an example of ‘as-
sembled complexes,’ which are of current interest.19
This work was supported in part by the Grants-in-Aid for
Scientific Research (Nos. 13304049, 14044012, and 16033207)
from the Ministry of Education, Culture, Sports, Science and
Technology.
References and Notes
1
2
For recent reviews, see: A. Kraft, A. C. Grimsdale, and A. B.
Holmes, Angew. Chem., Int. Ed., 37, 402 (1998); S. Yamaguchi
and K. Tamao, Chem. Lett., 34, 2 (2005).
‘‘Multiple Bonds and Low Coordination in Phosphorus Chemistry,’’
ed. by M. Regitz and O. J. Scherer, Georg Thieme Verlag, Stuttgart
(1990); M. Yoshifuji, J. Organomet. Chem., 611, 210 (2000).
V. A. Wright and D. P. Gates, Angew. Chem., Int. Ed., 41, 2389
(2002).
3
4
R. C. Smith, X. Chen, and J. D. Protasiewicz, Inorg. Chem., 42, 5468
(2003); R. C. Smith and J. D. Protasiewicz, J. Am. Chem. Soc., 126,
2268 (2004).
Figure 1. UV–vis spectra of 6a, 6b and 9 in CH2Cl2. Molar ab-
sorption coefficients for 6a and 6b are calculated based on the
formal repeating unit.
5
S. Shah, T. Concolino, A. L. Rheingold, and J. D. Protasiewicz,
Inorg. Chem., 39, 3860 (2000); S. Shah, B. E. Eichler, R. C. Smith,
P. P. Power, and J. D. Protasiewicz, New J. Chem., 27, 442 (2003).
N. Yamada, K. Toyota, and M. Yoshifuji, Chem. Lett., 2001, 248.
For recent reviews on polymer complexes, see: ‘‘Metal Complexes
OC8H17
R
C8H17 C8H17
6
7
and Metals in Macromolecules,’’ ed. by D. Wohrle and A. D.
¨
Pomogailo, Wiley-VCH, Weinheim (2003).
R
R
R
8
9
a) K. Toyota, J. Ujita, S. Kawasaki, K. Abe, N. Yamada, and
M. Yoshifuji, Tetrahedron Lett., 45, 7609 (2004). For reviews of
monomeric DPCB-metal catalysts, see: b) M. Yoshifuji, J. Synth.
Org. Chem. Jpn., 61, 1116 (2003). c) F. Ozawa and M. Yoshifuji,
C. R. Chimie, 7, 747 (2004).
a) R. Appel, V. Winkhaus, and F. Knoch, Chem. Ber., 120, 243
(1987). b) M. Yoshifuji, K. Toyota, M. Murayama, H. Yoshimura,
A. Okamoto, K. Hirotsu, and S. Nagase, Chem. Lett., 1990, 2195.
c) K. Toyota, K. Abe, K. Horikawa, and M. Yoshifuji, Bull. Chem.
Soc. Jpn., 77, 1377 (2004).
C8H17O
4c: R = C≡CH
5c: R = C≡CP(H)Mes*
4d: R = C≡CH
5d: R = C≡CP(H)Mes*
Mes*
P
R1
R1
Mes* P
S
P Mes*
S
P
10 S. C. Ng, J. M. Xu, and H. S. O. Chan, Synth. Met., 92, 33 (1998).
11 J. Huang and S. P. Nolan, J. Am. Chem. Soc., 121, 9889 (1999).
12 The carbene ligand-Pd catalyst system improved the yield. See
Supporting Information.
13 M. Belletete, J.-F. Morin, S. Beaupre, M. Ranger, M. Leclerc, and
G. Durocher, Macromolecules, 34, 2288 (2001).
(CH2)8
Mes*
n
8
9
R1 = 2-thienyl
ˆ
´
Chart 1.
14 G. Markl and P. Kreitmeier, Angew. Chem., Int. Ed. Engl., 27, 1360
¨
was suppressed to lead to better yield due to the rigidity of link-
ers; (iii) polymer 6 is expected to show better electronic interac-
tion between the DPCB moieties, due to ꢀ-conjugation: Figure 1
shows UV–vis spectra of 6a and 6b and the related compound
9.9c Apparent red shifts were observed in the ꢀ–ꢀÃ absorption
bands of 6a and 6b, compared with that of 9.17 These facts indi-
cate relatively good ꢀ conjugation in 6a and 6b. The degree of
the red shift is 6a < 6b, probably because the octyl group on the
thienyl ring of 6a hinders coplanarity between the thienyl and
phenylene moieties.
(1988); A. H. Cowley, J. E. Kilduff, N. C. Norman, M. Pakulski,
J. L. Atwood, and W. E. Hunter, J. Am. Chem. Soc., 105, 4845
(1983).
15 C. Weder and M. S. Wrighton, Macromolecules, 29, 5157 (1996);
B. Liu, W.-L. Yu, J. Pei, S.-Y. Liu, Y.-H. Lai, and W. Huang,
Macromolecules, 34, 7932 (2001).
16 Molecular weights were determined by gel-permeation chromatog-
raphy using polystyrene as standard. For the reason for the large
Mw=Mn ratio of 6a, see Ref. 8a.
17 The ꢀÃ orbitals of DPCB correspond to two LUMOs. See, F. Ozawa,
S. Kawagishi, T. Ishiyama, and M. Yoshifuji, Organometallics, 23,
1325 (2004).
18 The 31P NMR data were obtained by monitoring the reaction mix-
tures, indicating complex formation. Signals due to the terminal
moieties were not detected because of low concentration due to poor
solubility of 6. After working up, the complexes were hardly soluble
in common organic solvents.
Next, transition metal complex formation of the polymers
was investigated. When 1 molar amount of PdCl2(MeCN)2
was allowed to react with the polymers in THF at room temper-
ature for 3 h, dark brown polymer complexes 7a and 7b were ob-
tained in ca. 65% and 70% yield, respectively. 7a: 31P NMR
(THF-C6D6) ꢁ 152 (br.); IR (KBr) 1718, 1591, 1462, 1437,
19 For example, T. Ito, T. Hamaguchi, H. Nagino, T. Yamaguchi, H.
Kido, I. S. Zavarine, T. Richmond, J. Washington, and C. P. Kubiak,
J. Am. Chem. Soc., 121, 4625 (1999); Y. M. A. Yamada, K. Takeda,
H. Takahashi, and S. Ikegami, J. Org. Chem., 68, 7733 (2003).
and 1122 cmÀ1; 7b: 31P NMR (THF-C6D6) ꢁ 150 (br.); IR
18
(KBr) 1724, 1595, 1460, 1265, 1122, 1072, and 802 cmÀ1
This is the first example of the complex formation of conju-
.
Published on the web (Advance View) April 16, 2005; DOI 10.1246/cl.2005.724