OBn
N
NZ
H
NZ
NZ
OBn
N
OBn
N
N
N
N
Troc
Fmoc
H
Fmoc
O
O
H
Fmoc
O
N
N
NZ NH
O
O
v–viii
i–iii
9
O
OBn
N
O
N
O
O
N
O
N
O
iv
N
O
O
N
O
O
O
O
ZN
NHNHBoc
O
O
ZN
OCHPh2
N
O
N
N
ZN
OCHPh2
ZN
NHNHBoc
O
OBn
BocHN
O
7
8
11
10
N
CO2H
ZN
OCHPh2
xiv
Troc
Troc
NH
NH
BocHN
Troc
17
NH
OBn
AllO
Cl
NH2
14
xi
xii, xiii
ix, x
AllO
HO
O
O
O
O
O
O
xv–xvii
O
OH
O
OH
13
12
Z
OBn
BocHN
OBn
BocHN
NZ NH
15
16
OBn
–
N
Cl
Z
Z
+
N
NH3
NH
NH
N
O
O
O
O
HO
N
N
BnO
N
N
O
N
O
O
O
+
xx, xxi
O
O
O
O
O
O
xviii
xix
OBn
–
NH3
1
O
O
N
O
N
CF3CO2
N
O
N
O
N
ZN
OH
HN
HN
OH
OBn
18
HN
O
ZN
O
19
20
Scheme 2 Reagents and conditions: i, TFA–CH2Cl2 (10:1), PhOH (2 equiv.), 25 °C; ii, BocNHNH2 (2 equiv.), DCC (2 equiv.), 1-hydroxybenzotriazole
hydrate (HOBT) (2 equiv), THF (ca. 0.33 m), 0 to 25 °C, 93% (2 steps); iii, Et2NH–MeCN (1:1) (ca. 0.55 m); iv, CH2Cl2 (ca. 0.15 m), add Et3N (2.3 equiv.)
at 210 °C, stir 5 min, then add BOP-Cl (1.2 equiv.), warm to 0 °C, 4 h, 75% (2 steps); v, TFA–CH2Cl2 (1:1) (ca. 0.2 m), 0 °C; vi, NBS (2 equiv.), THF–H2O
(1:1) (ca. 0.04 m), 0 to 25 °C; vii, Ph2CN2 (1.9 equiv.), Me2CO (ca. 0.16 m), 25 °C, 12 h, 68% (3 steps); viii, Et2NH–MeCN (1:1) (ca. 0.24 m), 25 °C, 40
min; ix, Troc-Cl (1.05 equiv.), NaOH (2 equiv.), THF, H2O, 25 °C, 90%; x, NaHCO3 (4.3 equiv.), allyl bromide (6.2 equiv.), DMF (ca. 0.31 m), 25 °C, 92%;
xi, DCC (1.2 equiv.), DMAP (1.25 equiv.), CH2Cl2 (ca. 0.322 m), 0 to 25 °C, 83–88%; xii, morpholine (6.5 equiv.), (Ph3P)4Pd (5.9 mol%), THF (ca. 0.22
m), 0 to 25 °C, 59%; xiii, (COCl)2 (20 equiv.), C6H6 (ca. 0.4 m), 25 °C, 2.5 h; xiv, AgCN (1.3 equiv.), C6H6 (ca. 0.12 m), 60 °C for 2 min, 73–86% (for viii,
xiii, xiv); xv, Zn (70 equiv.), AcOH–H2O (10:1) (ca. 0.0685 m), 25 °C, 3 h; xvi, ZCl (3 equiv.), 10% aq. NaHCO3, CH2Cl2, 25 °C, 2 h, 78% (2 steps); xvii,
TFA–CH2Cl2 (2:1) (ca. 0.06 m), PhOH (2.2 equiv.), 0 °C, 1 h, 100%; xviii, HATU (10 equiv.), CH2Cl2 (500 ml), 0 °C, then slow addition of 18 (1.4 g) and
NEM (13.5 equiv.) in CH2Cl2 (500 ml) over 3 h, then 0 °C, 2 h, then 25 °C, 30 h, 25%; xix, 10% Pd–C ( = weight of 19 used), MeOH (ca. 0.01 m), HCl
(1 equiv.), H2 (1 atm.), 25 °C, 24 h; xx, 3 (1 equiv.), CH2Cl2 (ca. 0.03 m), 278 °C, add Et3N (9.3 equiv.), warm to 25 °C, stir 10 min, 31% (from 19); xxi,
CDCl3 (wet), 72 h, 0 °C, 100%
† All new compounds reported in this synthetic route gave satisfactory 400
high dilution. This produced 19 in a reproducible 25% yield
after flash chromatography. Compound 19 was then deprotected
by catalytic hydrogenolysis over palladium on carbon. We
MHz 1H and 100 MHz 13C NMR and IR spectra, as well as HRMS and/or
microanalyses within 0.4%.
deliberately conducted this hydrogenation in methanolic HCl,
so as to minimise the occurrence of O(19) to N(18) acyl
rearrangement during this lengthy reaction. Without further
purification, crude 20 was suspended in CH2Cl2 along with 3.2
After cooling to 278 °C, Et3N was added, and the reaction
warmed to room temperature where it was stirred for 10 min. A
rapid coupling ensued to deliver 5 in 31% yield after
chromatographic purification. Upon standing in undried CDCl3
(Aldrich) for 72 h, 5 readily hydrated to give A83586C in
1 T. A. Smitka, J. B. Deeter, A. H. Hunt, F. P. Mertz, R. M. Ellis,
L. D. Boeck and R. C. Yao, J. Antibiot., 1988, 41, 726.
2 K. J. Hale, J. Cai and V. M. Delisser, Tetrahedron Lett., 1996, 37,
9345.
3 K. J. Hale, V. M. Delisser, L.-K. Yeh, S. A. Peak, S. Manaviazar and
G. S. Bhatia, Tetrahedron Lett., 1994, 35, 7685.
4 G. C. Stelakatos, A. Paganou and L. Zervas, J. Chem. Soc. C, 1966,
1191.
5 R. A. Boissonnas, St. Guttmann and P.-A. Jaquenoud, Helv. Chim. Acta,
1960, 43, 1349.
6 P. L. Durette, F. Baker, P. L. Barker, J. Boger, S. S. Bondy,
M. L. Hammond, T. J. Lanza, A. A. Pessolano and C. G. Caldwell,
Tetrahedron Lett., 1990, 31, 1273.
7 R. D. Tung and D. H. Rich, J. Am. Chem. Soc., 1985, 107, 4342.
8 H. T. Cheung and E. R. Blout, J. Org. Chem., 1965, 30, 315.
9 K. J. Hale, S. Manaviazar and V. M. Delisser, Tetrahedron, 1994, 50,
9181.
10 V. Bocchi, G. Casnati, A. Dossena and R. Marchelli, Synthesis, 1979,
961.
11 Compound 14 was prepared by the same method described for its
l-enantiomer by: Y. Nakamura, M. Hirai, K. Tamotus, Y. Yonezawa
and C. Shin, Bull. Chem. Soc. Jpn., 1995, 68, 1369.
12 H. Kunz and H. Waldmann, Angew. Chem., Int. Ed. Engl., 1984, 23,
71.
1
quantitative yield. The H and 13C NMR spectra of synthetic
A83586C in CDCl3 were identical in every respect with the
spectra of authentic A83586C. In addition, synthetic A83586C
also gave rise to an (M + Na)+ ion at m/z 999.5360 in its high
·
resolution FAB mass spectrum;† the calculated value for
C47H76N8O14Na is 999.5379.
We thank the EPSRC (Project Grant GR/J92590), Zeneca,
Pfizer and Rhone-Poulenc Rorer for financial support. We
thank Dr Tim Smitka of Eli Lilly for kindly supplying us with
1
the original H and 13C NMR spectra of natural 1. We are
indebted to Dr Glyn Williams of Roche Products for obtaining
1
the 500 MHz H NMR spectrum of synthetic 1, and to his
colleague Dr B. K. Handa for urging us to try the HATU
reagent. We thank the ULIRS MS Service for HRMS
measurements.
13 L. A. Carpino, J. Am. Chem. Soc., 1993, 115, 4937.
Footnotes and References
* E-mail: k.j.hale@ucl.ac.uk
Received in Glasgow, UK, 26th August 1997; 7/06206K
2320
Chem. Commun., 1997