Piperazinyl Oxazolidinone Antibacterial Agents
J ournal of Medicinal Chemistry, 1998, Vol. 41, No. 19 3735
C. W. Synthesis and Antibacterial Activity of [6,5,5] and [6,6,5]
Tricyclic Fused Oxazolidinones. Bioorg. Med. Chem. Lett. 1998,
8, 1231-1236.
Ack n ow led gm en t. The authors thank J ohn W.
Allison, Ronda D. Schaadt, and Betty Yagi for the in
vitro data; J udith C. Hamel and Douglas Stapert for
the in vivo data. The personnel of Pharmacia and
Upjohn’s Structural, Analytical, and Medicinal Chem-
istry unit are thanked for elemental analysis and mass
spectral data.
(13) Hutchinson, D. K.; Barbachyn, M. R.; Brickner, S. J .; Buysse,
J . M.; Demyan, W.; Ford, C. W.; Garmon, S. A.; Glickman, S.
E.; Grega, K. C.; Hendges, S. K.; Kilburn, J . O.; Manninen, P.
R.; Reid, R. J .; Toops, D. A.; Ulanowicz, D. A. Zurenko, G. E.
Piperazinyl Oxazolidinones: Structure Activity Relationships of
a New Class of Oxazolidinone Antibacterial Agents. Abstracts
of Papers; 35th Interscience Conference on Antimicrobial Agents
and Chemotherapy, San Francisco, CA, Sept 1995; American
Society for Microbiology: Washington, DC, 1995; Abstract No.
F207.
(14) Ford, C. W.; Hamel, J . C.; Wilson, D. M.; Moerman, J . K.;
Stapert, D.; Yancey, R. J .; Hutchinson, D. K.; Barbachyn, M.
R.; Brickner, S. J . In Vivo Activities of U-100592 and U-100766,
Novel Oxazolidinone Antimicrobial Agents, against Experimen-
tal Bacterial Infections. Antimicrob. Agents Chemother. 1996,
1508-1513.
(15) Zurenko, G. E.; Yagi, B. H.; Schaadt, R. D.; Allison, J . W.;
Kilburn, J . O.; Glickman, S. E.; Hutchinson, D. K.; Barbachyn,
M. R.; Brickner, S. J . In Vitro Activities of U-100592 and
U-100766, Novel Oxazolidinone Antibacterial Agents. Antimi-
crob. Agents Chemother. 1996, 839-845.
(16) J ones, R. N.; J ohnson, D. M.; Erwin, M. E. In Vitro Antimicrobial
Activities and Spectra of U-100592 and U-100766, Two Novel
Fluorinated Oxazolidinones. Antimicrob. Agents Chemother.
1996, 720-726.
Su p p or tin g In for m a tion Ava ila ble: NMR spectral data
for each of the new compounds of this report (5 pages).
Ordering information is given on any current masthead page.
Refer en ces
(1) Current address: Bristol-Meyers-Squibb Pharmaceutical Re-
seach Institute, Department 303, 5 Research Parkway, Wall-
ingford, CT 06492.
(2) Current address: Central Research, Pfizer, Inc., Groton, CT
06340.
(3) Brickner, S. J . Oxazolidinone Antibacterial Agents. Curr. Phar-
maceut. Des. 1996, 2, 175-194.
(4) Slee, A. M.; Wuonola, M. A.; McRipley, R. J .; Zajac, I.; Zawada,
M. J .; Bartholomew, P. T.; Gregory, W. A.; Forbes, M. Oxazoli-
dinones, a New Class of Synthetic Antibacterial Agents: In Vitro
and In Vivo Activities of DuP 105 and DuP 721. Antimicrob.
Agents Chemother. 1987, 31, 1791-1797.
(5) Eustice, D. C.; Feldman, P. A.; Zajac, I.; Slee, A. M. Mechanism
of Action of DuP 721: Inhibition of an Early Event during
Initiation of Protein Synthesis. Antimicrob. Agents Chemother.
1988, 32, 1218-1222.
(17) Kaatz, G. W.; Seo, S. M. In Vitro Activities of Oxazolidinone
Compounds U100592 and U100766 against Staphylococcus
aureus and Staphylococcus epidermis, Antimicrob. Agents
Chemother. 1996, 799-801.
(6) For early SAR work on compounds related to DuP 721, see: (a)
Gregory, W. A.; Brittelli, D. R.; Wang, C.-L. J .; Kezar, H. S.;
Carlson, R. K.; Park, C.-H.; Corless, P. F.; Miller, S. J .;
Rajagopalan, P.; Wuonola, M. A.; McRipley, R. J .; Eberly, V. S.;
Slee, A. M.; Forbes, M. Antibacterials. Synthesis and Structure-
Activity Studies of 3-Aryl-2-oxooxazolidines. 2. The “A” Group.
J . Med. Chem. 1990, 33, 2569-2578. (b) Gregory, W. A.; Brittelli,
D. R.; Wang, C.-L. J .; Wuonola, M. A.; McRipley, R. J .; Eustice,
D. C.; R. J .; Eberly, V. S.; Bartholomew, P. T.; Slee, A. M.; Forbes,
M. Antibacterials. Synthesis and Structure-Activity Studies of
3-Aryl-2-oxooxazolidines. 1. The “B” Group. J . Med. Chem. 1989,
32, 1673-1681. (c) Park, C.-H.; Brittelli, D. R.; Wang, C. L.-J .;
Marsh, F. D.; Gregory, W. A.; Wuonola, M. A.; McRipley, R. J .;
Eberly, V. S.; Slee, A. M.; Forbes, M. Antibacterials. Synthesis
and Structure-Activity Studies of 3-Aryl-2-oxooxazolidines. 4.
Multiply-Substituted Aryl Derivatives. J . Med. Chem. 1992, 35,
1156-1165.
(18) Mason, E. O.; Lamberth, L. B.; Kaplan, S. L. In Vitro Activities
of Oxazolidinones U-100592 and U-100766 against Penicillin-
Resistant and Cephalosporin-Resistant Strains of Streptococcus
pneumoniae. Antimicrob. Agents Chemother. 1996, 1039-1040.
(19) Lin, A. H.; Murray, R. W.; Vidmar, T. J .; Marotti, K. R. The
Oxazolidinone Eperezolid Binds to the 50S Ribosomal Subunit
and Competes with Binding of Chloramphenicol and Lincomycin.
Antimicrob. Agents Chemother. 1997, 41, 2127-2131.
(20) Shinabarger, D. L.; Marotti, K. R.; Murray, R. W.; Lin, A. H.;
Melchior, E. P.; Swaney, S. M.; Dunyak, D. S.; Demyan, W. F.;
Buysse, J . M. Mechanism of Action of Oxazolidinones: Effects
of Linezolid and Eperezolid on Translation Reactions. Antimi-
crob. Agents Chemother. 1997, 41, 2132-2136.
(21) Hildalgo, I. L.; Raub, T. J .; Borchardt, R. T. Characterization of
the Human Colon Carcinoma Cell Line (Caco-2) as a Model
System for Intestinal Permeability. Gastroenterology. 1989, 96,
736-749.
(22) Artursson, P.; Palm, K.; Luthman, K. Caco-2 Monolayers in
Experimental and Theoretical Predictions of Drug Transport.
Adv. Drug Delivery Rev. 1996, 23, 77-98.
(23) Prueksaritanont, T.; Gorham, L. M.; Hochman, J . H.; Tran, L.
O.; Vyas, K. P. Comparative Studies of Drug-Metabolizing
Enzymes in Dog, Monkey, and Human Small Intestines, and in
Caco-2 Cells. Drug Metab. Disp. 1996, 24, 634-642.
(24) Peters, W. H. N.; Roelofs, H. M. J . Time-Dependent Activity and
Expression of Glutathione-S-Transferases in the Human Colon
Adenocarcinoma Cell Line Caco-2. Biochem. J . 1989, 264, 613-
616.
(25) Oude-Elferink, R. P.; Baker, C. T.; J ansen, P. L. Glutathione
Conjugate Transport by Human Colon Adenocarcinoma Cells
(Caco-2 Cells). Biochem. J . 1993, 290 (3), 759-764.
(26) Hilgers, A. R.; Conradi, R. A.; Burton, P. S. Caco-2 cell Mono-
layers as a Model for Drug Transport Across the Intestinal
Mucosa. Pharm. Res. 1990, 7, 902-910.
(27) Conradi, R. A.; Hilgers, A. R.; Ho, N. F. H.; Burton, P. S. The
Influence of Peptide Structure on Transport Across Caco-2 Cells.
Pharm. Res. 1991, 8, 1453-1460.
(28) Sawada, G. A.; Ho, N. F. H.; Williams, L. R.; Barshun, C. L.;
Raub, T. J . Transcellular Permeability of Chloropromazine
demonstrating the Roles of Protein Binding and Membrane
Partitioning. Pharm. Res. 1994, 11, 665-673.
(29) Amidon, G. L.; Lennernas, H.; Shah, V. P.; Crison, J . R. A
Theoretical Basis for a Biopharmaceutic Drug Classification:
The Correlation of In Vitro Drug Product Dissolution and In Vivo
Bioavailability. Pharm. Res. 1995, 12, 413-420.
(30) Podergajs, S.; Stanovnik, B.; Tisler, M. A New Approach for the
Synthesis of Fused Imidazoles: The Synthesis of 3-Acyl-
Substituted Imidazo[1,2-x]azines. Synthesis 1984, 263-265.
(7) (a) Scrip World Pharmaceutical News, October 13, 1987, 1250,
p 25. (b) Pharmaprojects, April 12, 1995, PJ B Publications: Ltd.,
Richmond, Surrey, U.K. (c) Pharmcast-International, Feb 1995,
7-I-484, 487.
(8) (a) Brickner, S. J .; Hutchinson, D. K.; Barbachyn, M. R.;
Manninen, P. R.; Ulanowicz, D. A.; Garmon, S. A.; Grega, K. C.;
Hendges, S. K.; Toops, D. S.; Ford, C. W.; Zurenko, G. E.
Synthesis and Antibacterial Activity of U-100592 and U-100766,
Two Oxazolidinone Antibacterial Agents for the Potential Treat-
ment of Multidrug-Resistant Gram-Positive Bacterial Infections.
J . Med. Chem. 1996, 39, 673-679. (b) Zurenko, G. E.; Ford, C.
W.; Hutchinson, D. K.; Brickner, S. J .; Barbachyn, M. R.
Oxazolidinone Antibacterial Agents: Development of the Clinical
Candidates Eperezolid and Linezolid. Exp. Opin. Invest. Drugs.
1997, 6, 151-158. (c) For related SAR work, see refs 9-13.
(9) Barbachyn, M. R.; Toops, D. S.; Ulanowicz, D. A.; Grega, K. C.;
Brickner, S. J .; Ford, C. W.; Zurenko, G. E.; Hamel, J . C.;
Schaadt, R. D.; Stapert, D.; Yagi, B. H.; Buysse, J . M.; Demyan,
W. F.; Kilburn, J . O.; Glickman, S. E. Synthesis and Antibacte-
rial Activity of New Tropone-Substituted Phenyloxazolidinone
Antibacterial Agents. 1. Identification of Leads and Importance
of the Tropone Substitution Pattern. Bioorg. Med. Chem. Lett.
1996, 6, 1003-1008.
(10) Barbachyn, M. R.; Toops, D. S.; Grega, K. C.; Hendges, S. K.;
Ford, C. W.; Zurenko, G. E.; Hamel, J . C.; Schaadt, R. D.;
Stapert, D.; Yagi, B. H.; Buysse, J . M.; Demyan, W. F.; Kilburn,
J . O.; Glickman, S. E. Synthesis and Antibacterial Activity of
New Tropone-Substituted Phenyloxazolidinone Antibacterial
Agents. 2. Modification of the Phenyl Ring - The Potentiating
Effect of Fluorine Substitution on In Vivo Activity. Bioorg. Med.
Chem. Lett. 1996, 6, 1009-1014.
(11) Gleave, M. D.; Brickner, S. J . Oxazolidinone Antibacterial
Agents. An Enantioselective Synthesis of the [6,5,5] Tricyclic
Fused Oxazolidinone Ring System and Application to the
Synthesis of a Rigid DuP 721 Analogue. J . Org. Chem. 1996,
61, 6470-6474.
(12) Gleave, D. M.; Brickner, S. J .; Manninen, P. R.; Allwine, D. A.;
Lovasz, K. D.; Rohrer, D. C.; Tucker, J . A.; Zurenko, G. E.; Ford,
J M980274L